Skip to main content

Backend.AI API Client Library

Project description

PyPI version Python Versions Build Status (Linux) Build Status (Windows) Code Coverage

The official API client library for Backend.AI

Usage

You should set the access key and secret key as environment variables to use the API. Grab your keypair from cloud.backend.ai or your cluster admin.

export BACKEND_ACCESS_KEY=...
export BACKEND_SECRET_KEY=...

# optional (for local clusters)
export BACKEND_ENDPOINT="https://my-precious-cluster/"

Command-line Interface

backend.ai command is the entry point of all sub commands. (Alternatively you can use a verbosely long version: python -m ai.backend.client.cli)

Highlight: run command

To run the code specified in the command line directly, use -c option to pass the code string (like a shell).

$ backend.ai run python3 -c "print('hello world')"
∙ Client session token: d3694dda6e5a9f1e5c718e07bba291a9
✔ Kernel (ID: zuF1OzMIhFknyjUl7Apbvg) is ready.
hello world
✔ Cleaned up the kernel.

You can even run a C code on-the-fly. (Note that we put a dollar sign before the single-quoted code argument so that the shell to interpret '\n' as actual newlines.)

$ backend.ai run c -c $'#include <stdio.h>\nint main() {printf("hello world\\n");}'
∙ Client session token: abc06ee5e03fce60c51148c6d2dd6126
✔ Kernel (ID: d1YXvee-uAJTx4AKYyeksA) is ready.
hello world
✔ Cleaned up the kernel.

For larger programs, you may upload multiple files and then build & execute them. The below is a simple example to run a sample C program.

$ git clone https://gist.github.com/achimnol/df464c6a3fe05b21e9b06d5b80e986c5 c-example
Cloning into 'c-example'...
Unpacking objects: 100% (5/5), done.
$ cd c-example
$ backend.ai run c main.c mylib.c mylib.h
∙ Client session token: 1c352a572bc751a81d1f812186093c47
✔ Kernel (ID: kJ6CgWR7Tz3_v2WsDHOwLQ) is ready.
✔ Uploading done.
✔ Build finished.
myvalue is 42
your name? LABLUP
hello, LABLUP!
✔ Cleaned up the kernel.

Please refer the --help manual provided by the run command.

You may use a shortcut command lcc and lpython instead of typing the full Python module path like:

$ lcc main.c mylib.c mylib.h

Highlight: proxy command

To use API development tools such as GraphiQL for the admin API, run an insecure local API proxy. This will attach all the necessary authorization headers to your vanilla HTTP API requests.

$ backend.ai proxy
∙ Starting an insecure API proxy at http://localhost:8084

More commands?

Please run backend.ai --help to see more commands.

Synchronous API

from ai.backend.client import Kernel

kern = Kernel.get_or_create('lua5', client_token='abc')
result = kern.execute('print("hello world")', mode='query')
print(result['console'])
kern.destroy()

You need to take care of client_token because it determines whether to reuse kernel sessions or not. Sorna cloud has a timeout so that it terminates long-idle kernel sessions, but within the timeout, any kernel creation requests with the same client_token let Sorna cloud to reuse the kernel.

Asynchronous API

import asyncio
from ai.backend.client.asyncio import AsyncKernel

async def main():
    kern = await AsyncKernel.get_or_create('lua5', client_token='abc')
    result = await kern.execute('print("hello world")', mode='query')
    print(result['console'])
    await kern.destroy()

loop = asyncio.get_event_loop()
try:
    loop.run_until_complete(main())
finally:
    loop.close()

All the methods of AsyncKernel objects are exactly same to the synchronous version, except that they are coroutines.

Additionally, AsyncKernel offers async-only method stream_pty(). It returns a StreamPty object which allows you to access a pseudo-tty of the kernel. StreamPty works like an async-generator and provides methods to send stdin inputs as well as resize the terminal.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

backend.ai-client-1.0.4.tar.gz (18.5 kB view details)

Uploaded Source

Built Distribution

backend.ai_client-1.0.4-py3-none-any.whl (36.5 kB view details)

Uploaded Python 3

File details

Details for the file backend.ai-client-1.0.4.tar.gz.

File metadata

File hashes

Hashes for backend.ai-client-1.0.4.tar.gz
Algorithm Hash digest
SHA256 ca047bc0e514954a2085330ac0695d5eceadcfc55ac59ae285b9755a80edbd21
MD5 8a490c3f92fc94a134eb95f0e726f042
BLAKE2b-256 a0e2df9005e53ddcd1af296ba490c68c8f8ed8bfa4b5c0fbaeaf184d649602ed

See more details on using hashes here.

Provenance

File details

Details for the file backend.ai_client-1.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for backend.ai_client-1.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 31f6ca57075113a509bb4033f5f1a6db088afc3f5bd0fa0a91c8c957ab91226a
MD5 e327e1b7471af50c7da0cc480411d3b5
BLAKE2b-256 15a9aa92707f3f99dc4da5d1a6b00e0e561dbd775a6bfbb7b60553de1cd49c14

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page