Skip to main content

Backend.AI Client for Python

Project description

PyPI version Python Versions Build Status (Linux) Build Status (Windows) Code Coverage

The official API client library for Backend.AI

Usage

You should set the access key and secret key as environment variables to use the API. Grab your keypair from cloud.backend.ai or your cluster admin.

export BACKEND_ACCESS_KEY=...
export BACKEND_SECRET_KEY=...

# optional (for local clusters)
export BACKEND_ENDPOINT="https://my-precious-cluster/"

Command-line Interface

backend.ai command is the entry point of all sub commands. (Alternatively you can use a verbosely long version: python -m ai.backend.client.cli)

Highlight: run command

To run the code specified in the command line directly, use -c option to pass the code string (like a shell).

$ backend.ai run python3 -c "print('hello world')"
∙ Client session token: d3694dda6e5a9f1e5c718e07bba291a9
✔ Kernel (ID: zuF1OzMIhFknyjUl7Apbvg) is ready.
hello world
✔ Cleaned up the kernel.

You can even run a C code on-the-fly. (Note that we put a dollar sign before the single-quoted code argument so that the shell to interpret '\n' as actual newlines.)

$ backend.ai run c -c $'#include <stdio.h>\nint main() {printf("hello world\\n");}'
∙ Client session token: abc06ee5e03fce60c51148c6d2dd6126
✔ Kernel (ID: d1YXvee-uAJTx4AKYyeksA) is ready.
hello world
✔ Cleaned up the kernel.

For larger programs, you may upload multiple files and then build & execute them. The below is a simple example to run a sample C program.

$ git clone https://gist.github.com/achimnol/df464c6a3fe05b21e9b06d5b80e986c5 c-example
Cloning into 'c-example'...
Unpacking objects: 100% (5/5), done.
$ cd c-example
$ backend.ai run c main.c mylib.c mylib.h
∙ Client session token: 1c352a572bc751a81d1f812186093c47
✔ Kernel (ID: kJ6CgWR7Tz3_v2WsDHOwLQ) is ready.
✔ Uploading done.
✔ Build finished.
myvalue is 42
your name? LABLUP
hello, LABLUP!
✔ Cleaned up the kernel.

Please refer the --help manual provided by the run command.

You may use a shortcut command lcc and lpython instead of typing the full Python module path like:

$ lcc main.c mylib.c mylib.h

Highlight: proxy command

To use API development tools such as GraphiQL for the admin API, run an insecure local API proxy. This will attach all the necessary authorization headers to your vanilla HTTP API requests.

$ backend.ai proxy
∙ Starting an insecure API proxy at http://localhost:8084

More commands?

Please run backend.ai --help to see more commands.

Synchronous API

from ai.backend.client import Kernel

kern = Kernel.get_or_create('lua5', client_token='abc')
result = kern.execute('print("hello world")', mode='query')
print(result['console'])
kern.destroy()

You need to take care of client_token because it determines whether to reuse kernel sessions or not. Sorna cloud has a timeout so that it terminates long-idle kernel sessions, but within the timeout, any kernel creation requests with the same client_token let Sorna cloud to reuse the kernel.

Asynchronous API

import asyncio
from ai.backend.client.asyncio import AsyncKernel

async def main():
    kern = await AsyncKernel.get_or_create('lua5', client_token='abc')
    result = await kern.execute('print("hello world")', mode='query')
    print(result['console'])
    await kern.destroy()

loop = asyncio.get_event_loop()
try:
    loop.run_until_complete(main())
finally:
    loop.close()

All the methods of AsyncKernel objects are exactly same to the synchronous version, except that they are coroutines.

Additionally, AsyncKernel offers async-only method stream_pty(). It returns a StreamPty object which allows you to access a pseudo-tty of the kernel. StreamPty works like an async-generator and provides methods to send stdin inputs as well as resize the terminal.

Troubleshooting (FAQ)

  • There are error reports related to simplejson with Anaconda on Windows. This package no longer depends on simplejson since v1.0.5, so you may uninstall it safely since Python 3.5+ offers almost identical json module in the standard library.

    If you really need to keep the simplejson package, uninstall the existing simplejson package manually and try reinstallation of it by downloading a pre-built binary wheel from here.

Project details


Release history Release notifications | RSS feed

This version

1.1.6

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

backend.ai-client-1.1.6.tar.gz (20.0 kB view details)

Uploaded Source

Built Distribution

backend.ai_client-1.1.6-py3-none-any.whl (28.8 kB view details)

Uploaded Python 3

File details

Details for the file backend.ai-client-1.1.6.tar.gz.

File metadata

File hashes

Hashes for backend.ai-client-1.1.6.tar.gz
Algorithm Hash digest
SHA256 d030a6412aa8e385c1681d7b61a692b7d949534456d9f9875e8ade46a82435ec
MD5 2384ea20662123b406631b52cdb43b09
BLAKE2b-256 86d5a23622e27e8b6a10b907e979145e2c1691edc6f7ee45205c0d4603e8ffca

See more details on using hashes here.

Provenance

File details

Details for the file backend.ai_client-1.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for backend.ai_client-1.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 8ce786e2b5dc5230b56aad46c876c60f39677c0b868620a4a20ec03cc11b3373
MD5 f519933b9c451913757e5c876ce84d8c
BLAKE2b-256 79105391d85f5b4a0adf3657b156697c941ec7b3ac16922eecd2e3e59b564fd0

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page