Skip to main content

A basin extractor.

Project description

DOI PyPI version Continuous Integration Documentation Status Code style: black

basinex

basinex-LOGO

The mHM basin extractor. Extract basins for given gauging stations.

Dependencies

  • numpy v1.14.5 or later
  • netCDF4
  • GDAL
  • pyyaml
  • C++ compiler (for development version)

Installation

If you have GDAL already installed, basinex can be installed via pip:

pip install basinex

GDAL installation

Getting GDAL installed with pip is allways a bit cumbersome. Therefore we compiled instructions for the main target systems.

Ubuntu

To get a recent version of GDAL, you can use the ppa of ubuntugis:

sudo add-apt-repository ppa:ubuntugis/ppa
sudo apt-get update
sudo apt install gdal-bin libgdal-dev
pip install wheel numpy
pip install GDAL==$(gdal-config --version)

MacOS

GDAL can be installed with homebrew:

brew install gdal
pip install wheel numpy
pip install GDAL==$(gdal-config --version)

Windows

You can use the unoffical wheels of Christoph Gohlke to install GDAL. The easiest way to do so, is using pipwin:

pip install pipwin
pipwin install gdal

Development version in conda environment

It is best to use basinex with conda to have gdal and NetCDF installed properly. To use the development version of basinex, download this repository and do the following in your conda environment:

conda install -y gdal netcdf4 pyyaml cxx-compiler
pip install .

Then you can execute basinex in that conda environment.

Documentation

Here is a short introduction about how to use the basin extractor. Have a look at the example directory or try it out directly with:

basinex -c examples

Usage

A command line script basinex will be installed with this package. You can execute it in your terminal and it will search for an input.yml file in your current directory.

To get more information about how to use the command line interface, you can have a look at the help message:

$ basinex -h
usage: basinex [-h] [-n LINE] [-i INPUT] [-v] [-c CWD] [--version]

mHM basin extractor

optional arguments:
  -h, --help            show this help message and exit
  -n LINE, --line LINE  the gauge to extract, given as its (0-based) line number in the look up table
  -i INPUT, --input INPUT
                        the input yaml file to read (default: 'input.yml')
  -v, --verbose         give some status output
  -c CWD, --cwd CWD     the working directory
  --version             show program's version number and exit

The input file

The main input file input.yml is documented and should (hopefully) give an overview

The default input file looks like this:

outpath: /path/to/output/
flowacc: /path/to/facc.asc
flowdir: /path/to/fdir.asc
gauges: /path/to/lut.txt
matching:
  scaling_factor: 0.001
  max_distance: 800
  max_error: 0.8
mask:
  fname: basin.asc
  outpath: morph
gauge:
  fname: idgauges.asc
  outpath: morph
gridfiles:
  - fname: /path/to/input/facc.asc
    outpath: morph
  - fname: /path/to/input/input1.asc
    outpath: morph
  - fname: /path/to/input/input2.asc
    outpath: luse
ncfiles:
  - fname: /path/to/input/input1.nc
    outpath: meteo
    ydim: northing
    xdim: easting
    y_shift: 0.5
    x_shift: 0.5
  - fname: /path/to/input/input2.nc
    outpath: meteo
    ydim: 'y'
    xdim: 'x'

Description

  • outpath: outpath/gauge_id/ - Required: Output location, all data will be writen to outpath/gauge_id/
  • flowacc: /path/to/facc.asc - Required: flowaccumulation
  • flowdir: /path/to/fdir.asc - Required: flowdirection
  • gauges: /path/to/lut.txt - Required: gauging data lookup table Structure of the table:
    • A simple text table with seperator ';'
    • if the basin should be delineated, the following fields are required:
      • id: an unique gauging station identifier
      • size: size of the catchment
      • y: y coordinate of the gauging station
      • x: x coordinate of the gauging station
    • if an pre processed basin mask should be used, the following fields are required:
      • id: an unique basin identifier
      • path: path to the mask file
      • varname: name of the mask variable (optional, only needed if the mask is stored in a netcdf file)
  • latitude-size-correction: False - Optional: perform a latitude correction for the given basin size (default: False)
    • AREA = N_cells * res_x * ( cos(LAT) * res_y ) * scaling factor^2
  • matching: - Required: gauge matching parameters
    • Note: The gauge matching is based on the flowaccumulation data. The value for any given cell in the flowaccumulation grid is interpreted as the size [in cells] of a river basin drainig into the respective cell. During gauge matching the flowaccumulation grid is searched for a cell with a corresponding basin size close to the given gauge basin size. The search radius will be increased succesively and can be limited to a maximum size. As soon as a matching cell is found (error between catchment sizes is smaller than the given maximum error) the search ends.
    • scaling_factor: .001 - scaling factor to account for the (possible) unit differences between the flowaccumulation and the gauging data. In order to make the data comparable the effective flowaccumulation will be caclulated as:
      • flowaccumulation_value * (cellsize * scaling_factor)^2
    • max_distance: 800 - maximum distance [in map units] around a given gauging station location to search for a matching cell
    • max_error: 0.8 - maximum error, as a fraction of the given basin size
  • mask: - Optional: Write the delineated basin
    • fname: basin.asc - Optional: file name of the mask grid (default: mask.asc)
    • outpath: morph - output subdirectory
  • gauge: - Optional: Write the gauge basin
    • fname: idgauges.asc - Optional: file name of the gauge grid (default: idgauges.asc)
    • outpath: morph - output subdirectory
  • gridfiles: - Optional: Any number of grid files to extract.
    • Note: currently only the formats ArcAscii and GeoTIFF are supported
    • fname: /path/to/input/facc.asc - flow accumulation and flow direction won't be written unless listed here
    • outpath: morph - Optional: output subdirectory under outpath/gauge_id
  • ncfiles: - Optional: Any number of netcdf files to extract.
    • Note: In order to extract from netcdf, coordinate values must be given.
      • Example: If your data variables depend on the three dimensions time, y, x your file should also contain the two one-dimensional (!) variables y (depending solely on the dimension y) and x (depending solely on the dimension x). Tools like cdo tend to silently remove variables, so double check, that this information is avaialable
    • fname: /path/to/input/input1.nc
    • outpath: meteo - Optional: output subdirectory under outpath/gauge_id
    • ydim: northing - Required: name of the (1D-) variable holding the y coordinates
    • xdim: easting - Required: name of the (1D-) variable holding the x coordinates
    • y_shift: .5 and x_shift: .5 - Optional: Coordinates of spatial data are definied on a certain location of the cell they belong to (e.g. upper or lower left corner). All the supported file formats handle coordinates transparently, with excpetion of netcdf. To account for the flexibility the format offers, it is possible to specify the fraction of a cell the origin is shifted from the upper left corner in x and y direction. The bounding box of the dataset (an imaginary box, that contains exactly the entire spatial domain) is then caclulated as:
      • ymin = min(y_values) - (cellsize * (1 - y_shift))
      • ymax = max(y_values) + (cellsize * y_shift)
      • xmin = min(x_values) - (cellsize * (1 - x_shift))
      • xmax = max(x_values) + (cellsize * x_shift)
      • Examples:
        • Your coordinate values specify the upper left corner of a cell
          • y_shift: 0
          • x_shift: 0
        • Your coordinate values specify the center of a cell:
          • y_shift: 0.5
          • x_shift: 0.5
        • Your coordinate values specify the lower left corner of a cell
          • y_shift: 1
          • x_shift: 0
      • Default: lower left corner, i.e:
        • y_shift: 1
        • x_shift: 0

Notes

This package was orginally developed by David Schäfer who also provides a standalone version of the geoarray subpackage.

The netcdf4 and geoarray subpackages have been taken from the jams-python package, that was formerly developed at the CHS department at the UFZ and is now released under the MIT license.

License

LGPLv3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

basinex-0.2.0.tar.gz (32.3 kB view details)

Uploaded Source

Built Distributions

basinex-0.2.0-cp310-cp310-win_amd64.whl (109.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

basinex-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (466.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

basinex-0.2.0-cp310-cp310-macosx_11_0_arm64.whl (101.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

basinex-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl (109.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

basinex-0.2.0-cp310-cp310-macosx_10_9_universal2.whl (174.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

basinex-0.2.0-cp39-cp39-win_amd64.whl (109.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

basinex-0.2.0-cp39-cp39-win32.whl (96.1 kB view details)

Uploaded CPython 3.9 Windows x86

basinex-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (471.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

basinex-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (462.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

basinex-0.2.0-cp39-cp39-macosx_11_0_arm64.whl (101.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

basinex-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl (109.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

basinex-0.2.0-cp39-cp39-macosx_10_9_universal2.whl (174.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

basinex-0.2.0-cp38-cp38-win_amd64.whl (110.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

basinex-0.2.0-cp38-cp38-win32.whl (96.8 kB view details)

Uploaded CPython 3.8 Windows x86

basinex-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (472.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

basinex-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (462.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

basinex-0.2.0-cp38-cp38-macosx_11_0_arm64.whl (100.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

basinex-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl (108.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

basinex-0.2.0-cp38-cp38-macosx_10_9_universal2.whl (171.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

basinex-0.2.0-cp37-cp37m-win_amd64.whl (109.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

basinex-0.2.0-cp37-cp37m-win32.whl (95.1 kB view details)

Uploaded CPython 3.7m Windows x86

basinex-0.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (446.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

basinex-0.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (436.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

basinex-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (108.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

basinex-0.2.0-cp36-cp36m-win_amd64.whl (109.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

basinex-0.2.0-cp36-cp36m-win32.whl (95.1 kB view details)

Uploaded CPython 3.6m Windows x86

basinex-0.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (446.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

basinex-0.2.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (435.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

basinex-0.2.0-cp36-cp36m-macosx_10_9_x86_64.whl (108.7 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file basinex-0.2.0.tar.gz.

File metadata

  • Download URL: basinex-0.2.0.tar.gz
  • Upload date:
  • Size: 32.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for basinex-0.2.0.tar.gz
Algorithm Hash digest
SHA256 979cc37c829acdb6f54dac08d981f201bb5e6446b2cadb8736d05bc5c15126db
MD5 fefab92cfafb416faab9c80d2dcb4664
BLAKE2b-256 691cff5ed5cee35c9fb1ec081387db21414328aee79914f2f1bb6ee21925a563

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: basinex-0.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 109.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for basinex-0.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9da10bce6ffcaee4d7c66f84c9da8a6b45c19c41769d53bd0c28acd20f7d44e0
MD5 e176857c486c1148412c51294a04912d
BLAKE2b-256 a74e0e301fd7a41d4584c8bf371c8dadb4d7e796310f57ffb6bb587bef94d220

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41dc4d7725967086a3a1fd3ec9f04e7b7cd3768abb5e5c85e99fd6fd9f71e94c
MD5 2429fe74ffa3ff4a6334299d69801c7e
BLAKE2b-256 32ccff9df602dc2b69ba25580d531a801f8cdcf5a28970f0e128462fecd80b81

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 96e96a5c9f7e4e25ff336ac9b54190810bde1517da7a19e3462e558ee99c505e
MD5 4ed3a29139f7c357bc0da70cbcb40d4a
BLAKE2b-256 871bb2c8334fe902593a32beebbd7bb9f288672542f05206bb78ea59761c54df

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 984e9b686720f8239d177be2086bf133ab307279c9c172ef9af573a89fa005f4
MD5 eb15f3141074f1768ea8ab1c34500b36
BLAKE2b-256 77fd2e9c6f84e44fc3ec5f5f17f61a7d2719311df712d596794c8d1bd40398e2

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1c307e0eafae2e8e124a2da78e855a7082d16c88c946bf5071900628df72556b
MD5 f02f862ab5b04b14c560b4b699f6912f
BLAKE2b-256 df54570e32f8c65353f84b6d3826ddbc79f9064a51fe61609d658bf5a73c8f77

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: basinex-0.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 109.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for basinex-0.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1d62a3ab9f5d2abd351c2c66825492052c2beadf118a785cd98526c48b807711
MD5 66375bf4e54eeb9ef4cc45d0e64693ea
BLAKE2b-256 ccedd0330d57a4f6d2e65c51baa444c35bc9bbdb1f63b842dd6f3d65b8430bd0

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: basinex-0.2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 96.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for basinex-0.2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 67b16468efefd51a041a016d2c6008f23a54700ea4165d04630ea9b42d40cb62
MD5 0c0252375175e63511df6a6ee580c91c
BLAKE2b-256 bbd57bb380c6e818398b090dbe8f9d642540249ac18ae56db7dce879f5bf7dc4

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 982abbb0149396adba3da3a3a487fad8542f763ffcbfe20ffa12169aa0af881b
MD5 0e4a0d82d741135cdc5c8a7b29b24845
BLAKE2b-256 512fbad492139ce0bc140285a9cd3b1afa6d3b6adba4ced7c63ea53257057dc6

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7d64d795d4f99663897dfdacaab913aee24809e9e3d170e23a4f31d3a1cbb2a5
MD5 ef8bde755ca335f9ba22a4df0cc26277
BLAKE2b-256 9bd72c186db7a326243841951b05aebe27480bf5e4a9640fed8e0f0eca50c777

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 446c576c1e6444b9ab08c97faf0c85205d675d289aa69df6e613c85cb67d60f6
MD5 a28d238db57d853067ed36e0224388ad
BLAKE2b-256 7557f28705cd5274d6d352f5f059a6ce611e7e0ed73f2734a0472ff9d9da7cb0

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce702e7b744949cff24cf9df54b33a62a287f9cb104d8eeed266507265956487
MD5 1bd25ad2c7fc9d101de175cf923d9263
BLAKE2b-256 1b05d443435acb52ca2c547ce1337b354a010920b54c4b495f1fa26de8576e81

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 85bc1e50b991c5a6a4454fae7cc4558488afaf07f1ea80f2f9543db5896472b0
MD5 d72fb87645db5d852b00d9e2f6c797b7
BLAKE2b-256 13c9ce72eee21038405bb175f4b1e8a9204517c188700c72ed8138f32e540037

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: basinex-0.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 110.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for basinex-0.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f68759f4bcf5f3304e73a054d877c1c1f4e62ed92a05b6a4e7483919d1959b5e
MD5 29a145837864313a83d082237188d7d7
BLAKE2b-256 ee491a66648e9ae60f57e842040ebd6750416f021ffc283961310a81c9400321

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: basinex-0.2.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 96.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for basinex-0.2.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a4df9daf2932b98dee6f83b77cd051dc5f555fb98d3dfa3ca4ca11019a18a6fc
MD5 42a0e17db3edf9f6bdfb0c7c54615017
BLAKE2b-256 f0af071bce54c51bf1f9dcecbadfc762ba46d668fa46eb309ffa085753162a6d

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0fe1286f7026350d8ff94ce14ed28c84499bdfd617dd98d235d044b5a23ab38d
MD5 cecec492f0a70b6bd79cb4fe434cb5b7
BLAKE2b-256 44c2afdcdd263071c3855b5edf984d813296044fd13c43c6b8ac6768ec0c38e7

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 65329883ba2d880467c26b85505ee9460741564a33d444fb890d64c487d39448
MD5 2ee1de5ea46770c7f07a80670ca1574d
BLAKE2b-256 5c0673ed229067e1d4b2945bcb2cb2fa498a75908f64971fd2ac544c577a0bf1

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af8aa8318c27bdf2e866be097c153f35558c63efeb0f800ae944807c3912709f
MD5 f8552f37ccc7a7fe22f28240cc83f29a
BLAKE2b-256 740ebdacbce145a38dc85147e0d9108b8d685d555267674253c5c965557bbb7b

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b8e79fab080d7200e5953f0d56b47984d8eb915002df420cfe141c6d7248b1c5
MD5 b52294f12ab2cf9687b3c8f83e1ac594
BLAKE2b-256 369513f070d9843b91febf40640aa268ad1c096b40da3850c07b8cfc027516d8

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 04cc02797866af2e1bcf31a5e126be8086eb297b132850a3f5681fa3dde74bd5
MD5 9c252eb5084ff85095da0aff36151086
BLAKE2b-256 21d0cab126b7897f4e556f0393793937fafbe3901180f7d404bf91f924941416

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: basinex-0.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 109.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for basinex-0.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6108a1577850cca81146c4fcba95730afbb0607ed0275a1e7bc03c1f4e5cd993
MD5 2dfeb0359c11b39f88d6936609ffbc06
BLAKE2b-256 c46eb46f3d10ff633d50c9c1e998488615b34e02838bec6c9ddf606359b1437c

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: basinex-0.2.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 95.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for basinex-0.2.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4526ab6194f34ab4b193a7b0fa1f52332092fffc49d4f760fcd20bda76c814fc
MD5 ab5c3b2f6226db541a592f781a3d7048
BLAKE2b-256 5f6294d498bc2fd8a983a6ed1f38d5062a31ce93793affb5378848c19268e7f5

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8ccdca9771973c4bed6cc46dd9cb1487aca3945350104afdc1d1a1163ffabb23
MD5 18b18fbfe896894815aa7149a7f718b9
BLAKE2b-256 d8614532534efa5e2e00b8dc62ce727e929bf05b151c39c4debeef6185e2191f

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 388fa90de34f1c1997f39b62991dea9d83ddd8124f73e5331bb49f2c5f14e9e4
MD5 3e1314e7e00ee2618f63965a14cd7ab3
BLAKE2b-256 4b6aca6d59fbe3ec4acdd2e1e5b27c2d628d605017d13e7747c02407bc5fa32a

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73df7ceb4807193cbd0f3ab51c2a4df23e1de1d999dce3e062a162099e3e88d6
MD5 a44b8289f02433add2a0c32e333b3bf1
BLAKE2b-256 984e3773e1e1a1d4d60b19df649ef90373029108ac77a3804f9ed07e91ff24b3

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: basinex-0.2.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 109.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for basinex-0.2.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a229629452d323bf35c7f946d45cae5647b12a3ab1343fa3ef2bcb147055a0c3
MD5 2cfe02eedadf8f8251879bbde1f2614c
BLAKE2b-256 bf28b24ddbf7d1372f425b7c885b6ea1ebcf436c0401eaefcf3ee68cce07a643

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: basinex-0.2.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 95.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for basinex-0.2.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 87668d2ed6be043f0e87e2ac410783d7adfb9992299b2a86c94463aa020d6919
MD5 2dbc6cf19bf7fb9f91179ff85adcafa0
BLAKE2b-256 672c4600dc9146921d0b76138e1480d0f2d64f437f029860f978b1178ffbd478

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9dcd723375c51a5c1b6bd76abc4a06ce8f2fa27bc90a4b7fc81e47404dafbfda
MD5 faaef38c58f91930b297432c02398d80
BLAKE2b-256 70e55de53a6eccd9c46bf81bcc65ebf4c03569e8878b02af2bb23e6bbe7886e3

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5edbeca8cf2d6a601f410ff1ba2306a327061a9133ccc4deaa9f3f657772599e
MD5 f5c9e94cffee16e08e3d5cb4c4f1c406
BLAKE2b-256 ad11335daf1619130951b3a877e9b0f42dc9f8278cd04eb2bb94ab9f8af0d723

See more details on using hashes here.

Provenance

File details

Details for the file basinex-0.2.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for basinex-0.2.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 916c2df38aa39c912972b91a591031133806b5f6c033f6e5a2da61b74c0c05de
MD5 5565301085816deb86f9fadcbf4fa126
BLAKE2b-256 81b76d16957b425bd98eb12815cd5c329312e8041160ef417693a8195d5d7fc6

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page