Skip to main content

Stitching together probabilistic models and inference.

Project description

Bayeux

Stitching together models and samplers

Unittests PyPI version

bayeux lets you write a probabilistic model in JAX and immediately have access to state-of-the-art inference methods. The API aims to be simple, self descriptive, and helpful. Simply provide a log density function (which doesn't even have to be normalized), along with a single point (specified as a pytree) where that log density is finite. Then let bayeux do the rest!

Installation

pip install bayeux-ml

Quickstart

We define a model by providing a log density in JAX. This could be defined using a probabilistic programming language (PPL) like numpyro, PyMC, TFP, distrax, oryx, coix, or directly in JAX.

import bayeux as bx
import jax

normal_density = bx.Model(
  log_density=lambda x: -x*x,
  test_point=1.)

seed = jax.random.PRNGKey(0)

Simple

Every inference algorithm in bayeux will (try to) run with just a seed as an argument:

opt_results = normal_density.optimize.optax_adam(seed=seed)
# OR!
idata = normal_density.mcmc.numpyro_nuts(seed=seed)
# OR!
surrogate_posterior, loss = normal_density.vi.tfp_factored_surrogate_posterior(seed=seed)

An (only rarely) optional third argument to bx.Model is transform_fn, which maps a real number to the support of the distribution. The oryx library is used to automatically compute the inverse and Jacobian determinants for changes of variables, but the user can supply these if known.

half_normal_density = bx.Model(
    lambda x: -x*x,
    test_point=1.,
    transform_fn=jax.nn.softplus)

Self descriptive

Since bayeux is built on top of other fantastic libraries, it tries not to get in the way of them. Each algorithm has a .get_kwargs() method that tells you how it will be called, and what functions are being called:

normal_density.optimize.jaxopt_bfgs.get_kwargs()

{jaxopt._src.bfgs.BFGS: {'value_and_grad': False,
  'has_aux': False,
  'maxiter': 500,
  'tol': 0.001,
  'stepsize': 0.0,
  'linesearch': 'zoom',
  'linesearch_init': 'increase',
  'condition': None,
  'maxls': 30,
  'decrease_factor': None,
  'increase_factor': 1.5,
  'max_stepsize': 1.0,
  'min_stepsize': 1e-06,
  'implicit_diff': True,
  'implicit_diff_solve': None,
  'jit': True,
  'unroll': 'auto',
  'verbose': False},
 'extra_parameters': {'chain_method': 'vectorized',
  'num_particles': 8,
  'num_iters': 1000,
  'apply_transform': True}}

If you pass an argument into .get_kwargs(), this will also tell you what will be passed on to the actual algorithms.

normal_density.mcmc.blackjax_nuts.get_kwargs(
    num_chains=5,
    target_acceptance_rate=0.99)

{<blackjax.adaptation.window_adaptation.window_adaptation: {'is_mass_matrix_diagonal': True,
  'initial_step_size': 1.0,
  'target_acceptance_rate': 0.99,
  'progress_bar': False,
  'algorithm': blackjax.mcmc.nuts.nuts},
 blackjax.mcmc.nuts.nuts: {'max_num_doublings': 10,
  'divergence_threshold': 1000,
  'integrator': blackjax.mcmc.integrators.velocity_verlet,
  'step_size': 0.01},
 'extra_parameters': {'chain_method': 'vectorized',
  'num_chains': 5,
  'num_draws': 500,
  'num_adapt_draws': 500,
  'return_pytree': False}}

A full list of available algorithms and how to call them can be seen with

print(normal_density)

mcmc
  .blackjax_hmc
  .blackjax_nuts
  .blackjax_hmc_pathfinder
  .blackjax_nuts_pathfinder
  .numpyro_hmc
  .numpyro_nuts
optimize
  .jaxopt_bfgs
  .jaxopt_gradient_descent
  .jaxopt_lbfgs
  .jaxopt_nonlinear_cg
  .optax_adabelief
  .optax_adafactor
  .optax_adagrad
  .optax_adam
  .optax_adamw
  .optax_adamax
  .optax_amsgrad
  .optax_fromage
  .optax_lamb
  .optax_lion
  .optax_noisy_sgd
  .optax_novograd
  .optax_radam
  .optax_rmsprop
  .optax_sgd
  .optax_sm3
  .optax_yogi
vi
  .tfp_factored_surrogate_posterior

Helpful

Algorithms come with a built-in debug mode that attempts to fail quickly and in a manner that might help debug problems quickly. The signature for debug accepts verbosity and catch_exceptions arguments, as well as a kwargs dictionary that the user plans to pass to the algorithm itself.

normal_density.mcmc.numpyro_nuts.debug(seed=seed)

Checking test_point shape 
Computing test point log density 
Loading keyword arguments... 
Checking it is possible to compute an initial state 
Checking initial state is has no NaN 
Computing initial state log density 
Transforming model to R^n 
Computing transformed state log density shape 
Comparing transformed log density to untransformed 
Computing gradients of transformed log density 
True

Here is an example of a bad model with a higher verbosity:

import jax.numpy as jnp

bad_model = bx.Model(
    log_density=jnp.sqrt,
    test_point=-1.)

bad_model.mcmc.blackjax_nuts.debug(jax.random.PRNGKey(0),
                                   verbosity=3, kwargs={"num_chains": 17})

Checking test_point shape 
Test point has shape
()
✓✓✓✓✓✓✓✓✓✓

Computing test point log density ×
Test point has log density
Array(nan, dtype=float32, weak_type=True)
××××××××××

Loading keyword arguments... 
Keyword arguments are
{<function window_adaptation at 0x77feef9308b0>: {'algorithm': <class 'blackjax.mcmc.nuts.nuts'>,
                                                  'initial_step_size': 1.0,
                                                  'is_mass_matrix_diagonal': True,
                                                  'progress_bar': False,
                                                  'target_acceptance_rate': 0.8},
 'extra_parameters': {'chain_method': 'vectorized',
                      'num_adapt_draws': 500,
                      'num_chains': 17,
                      'num_draws': 500,
                      'return_pytree': False},
 <class 'blackjax.mcmc.nuts.nuts'>: {'divergence_threshold': 1000,
                                     'integrator': <function velocity_verlet at 0x77feefbf4b80>,
                                     'max_num_doublings': 10,
                                     'step_size': 0.01}}
✓✓✓✓✓✓✓✓✓✓

Checking it is possible to compute an initial state 
Initial state has shape
(17,)
✓✓✓✓✓✓✓✓✓✓

Checking initial state is has no NaN 
No nans detected!
✓✓✓✓✓✓✓✓✓✓

Computing initial state log density ×
Initial state has log density
Array([1.2212421 ,        nan,        nan, 1.4113309 ,        nan,
              nan,        nan,        nan,        nan,        nan,
       0.5912253 ,        nan,        nan,        nan, 0.65457666,
              nan,        nan], dtype=float32)
××××××××××

Transforming model to R^n 
Transformed state has shape
(17,)
✓✓✓✓✓✓✓✓✓✓

Computing transformed state log density shape 
Transformed state log density has shape
(17,)
✓✓✓✓✓✓✓✓✓✓

Computing gradients of transformed log density ×
The gradient contains NaNs! Initial gradients has shape
(17,)
××××××××××

False

This is not an officially supported Google product.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bayeux_ml-0.1.3.tar.gz (25.6 kB view details)

Uploaded Source

Built Distribution

bayeux_ml-0.1.3-py3-none-any.whl (36.3 kB view details)

Uploaded Python 3

File details

Details for the file bayeux_ml-0.1.3.tar.gz.

File metadata

  • Download URL: bayeux_ml-0.1.3.tar.gz
  • Upload date:
  • Size: 25.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for bayeux_ml-0.1.3.tar.gz
Algorithm Hash digest
SHA256 bd292215371ce8da1342a2cb506086acc504fedfa45490b4c77bdfedf86d85eb
MD5 973055ef8279359ae9bdc27265c4ad93
BLAKE2b-256 635c8c947edf069748b53e32969d2cb2aba38ebfe2c6fc1c3bab37c8f80ee891

See more details on using hashes here.

Provenance

File details

Details for the file bayeux_ml-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: bayeux_ml-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 36.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for bayeux_ml-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 309371bf1f8b77a9bc4ff5a08f3c7ba1f7324ec3db122dd0bb9c84127b43723d
MD5 5772b5a4168d4ac5a0b319b62229c07b
BLAKE2b-256 52719b8cb443fcc40bbb19378c37eed9e4f6e4bf9357582791963a6bac90c266

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page