Skip to main content

Stitching together probabilistic models and inference.

Project description

Bayeux

Stitching together models and samplers

Unittests PyPI version

bayeux lets you write a probabilistic model in JAX and immediately have access to state-of-the-art inference methods. The API aims to be simple, self descriptive, and helpful. Simply provide a log density function (which doesn't even have to be normalized), along with a single point (specified as a pytree) where that log density is finite. Then let bayeux do the rest!

Installation

pip install bayeux-ml

Quickstart

We define a model by providing a log density in JAX. This could be defined using a probabilistic programming language (PPL) like numpyro, PyMC, TFP, distrax, oryx, coix, or directly in JAX.

import bayeux as bx
import jax

normal_density = bx.Model(
  log_density=lambda x: -x*x,
  test_point=1.)

seed = jax.random.PRNGKey(0)

Simple

Every inference algorithm in bayeux will (try to) run with just a seed as an argument:

opt_results = normal_density.optimize.optax_adam(seed=seed)
# OR!
idata = normal_density.mcmc.numpyro_nuts(seed=seed)
# OR!
surrogate_posterior, loss = normal_density.vi.tfp_factored_surrogate_posterior(seed=seed)

An (only rarely) optional third argument to bx.Model is transform_fn, which maps a real number to the support of the distribution. The oryx library is used to automatically compute the inverse and Jacobian determinants for changes of variables, but the user can supply these if known.

half_normal_density = bx.Model(
    lambda x: -x*x,
    test_point=1.,
    transform_fn=jax.nn.softplus)

Self descriptive

Since bayeux is built on top of other fantastic libraries, it tries not to get in the way of them. Each algorithm has a .get_kwargs() method that tells you how it will be called, and what functions are being called:

normal_density.optimize.jaxopt_bfgs.get_kwargs()

{jaxopt._src.bfgs.BFGS: {'value_and_grad': False,
  'has_aux': False,
  'maxiter': 500,
  'tol': 0.001,
  'stepsize': 0.0,
  'linesearch': 'zoom',
  'linesearch_init': 'increase',
  'condition': None,
  'maxls': 30,
  'decrease_factor': None,
  'increase_factor': 1.5,
  'max_stepsize': 1.0,
  'min_stepsize': 1e-06,
  'implicit_diff': True,
  'implicit_diff_solve': None,
  'jit': True,
  'unroll': 'auto',
  'verbose': False},
 'extra_parameters': {'chain_method': 'vectorized',
  'num_particles': 8,
  'num_iters': 1000,
  'apply_transform': True}}

If you pass an argument into .get_kwargs(), this will also tell you what will be passed on to the actual algorithms.

normal_density.mcmc.blackjax_nuts.get_kwargs(
    num_chains=5,
    target_acceptance_rate=0.99)

{<blackjax.adaptation.window_adaptation.window_adaptation: {'is_mass_matrix_diagonal': True,
  'initial_step_size': 1.0,
  'target_acceptance_rate': 0.99,
  'progress_bar': False,
  'algorithm': blackjax.mcmc.nuts.nuts},
 blackjax.mcmc.nuts.nuts: {'max_num_doublings': 10,
  'divergence_threshold': 1000,
  'integrator': blackjax.mcmc.integrators.velocity_verlet,
  'step_size': 0.01},
 'extra_parameters': {'chain_method': 'vectorized',
  'num_chains': 5,
  'num_draws': 500,
  'num_adapt_draws': 500,
  'return_pytree': False}}

A full list of available algorithms and how to call them can be seen with

print(normal_density)

mcmc
  .blackjax_hmc
  .blackjax_nuts
  .blackjax_hmc_pathfinder
  .blackjax_nuts_pathfinder
  .numpyro_hmc
  .numpyro_nuts
optimize
  .jaxopt_bfgs
  .jaxopt_gradient_descent
  .jaxopt_lbfgs
  .jaxopt_nonlinear_cg
  .optax_adabelief
  .optax_adafactor
  .optax_adagrad
  .optax_adam
  .optax_adamw
  .optax_adamax
  .optax_amsgrad
  .optax_fromage
  .optax_lamb
  .optax_lion
  .optax_noisy_sgd
  .optax_novograd
  .optax_radam
  .optax_rmsprop
  .optax_sgd
  .optax_sm3
  .optax_yogi
vi
  .tfp_factored_surrogate_posterior

Helpful

Algorithms come with a built-in debug mode that attempts to fail quickly and in a manner that might help debug problems quickly. The signature for debug accepts verbosity and catch_exceptions arguments, as well as a kwargs dictionary that the user plans to pass to the algorithm itself.

normal_density.mcmc.numpyro_nuts.debug(seed=seed)

Checking test_point shape 
Computing test point log density 
Loading keyword arguments... 
Checking it is possible to compute an initial state 
Checking initial state is has no NaN 
Computing initial state log density 
Transforming model to R^n 
Computing transformed state log density shape 
Comparing transformed log density to untransformed 
Computing gradients of transformed log density 
True

Here is an example of a bad model with a higher verbosity:

import jax.numpy as jnp

bad_model = bx.Model(
    log_density=jnp.sqrt,
    test_point=-1.)

bad_model.mcmc.blackjax_nuts.debug(jax.random.PRNGKey(0),
                                   verbosity=3, kwargs={"num_chains": 17})

Checking test_point shape 
Test point has shape
()
✓✓✓✓✓✓✓✓✓✓

Computing test point log density ×
Test point has log density
Array(nan, dtype=float32, weak_type=True)
××××××××××

Loading keyword arguments... 
Keyword arguments are
{<function window_adaptation at 0x77feef9308b0>: {'algorithm': <class 'blackjax.mcmc.nuts.nuts'>,
                                                  'initial_step_size': 1.0,
                                                  'is_mass_matrix_diagonal': True,
                                                  'progress_bar': False,
                                                  'target_acceptance_rate': 0.8},
 'extra_parameters': {'chain_method': 'vectorized',
                      'num_adapt_draws': 500,
                      'num_chains': 17,
                      'num_draws': 500,
                      'return_pytree': False},
 <class 'blackjax.mcmc.nuts.nuts'>: {'divergence_threshold': 1000,
                                     'integrator': <function velocity_verlet at 0x77feefbf4b80>,
                                     'max_num_doublings': 10,
                                     'step_size': 0.01}}
✓✓✓✓✓✓✓✓✓✓

Checking it is possible to compute an initial state 
Initial state has shape
(17,)
✓✓✓✓✓✓✓✓✓✓

Checking initial state is has no NaN 
No nans detected!
✓✓✓✓✓✓✓✓✓✓

Computing initial state log density ×
Initial state has log density
Array([1.2212421 ,        nan,        nan, 1.4113309 ,        nan,
              nan,        nan,        nan,        nan,        nan,
       0.5912253 ,        nan,        nan,        nan, 0.65457666,
              nan,        nan], dtype=float32)
××××××××××

Transforming model to R^n 
Transformed state has shape
(17,)
✓✓✓✓✓✓✓✓✓✓

Computing transformed state log density shape 
Transformed state log density has shape
(17,)
✓✓✓✓✓✓✓✓✓✓

Computing gradients of transformed log density ×
The gradient contains NaNs! Initial gradients has shape
(17,)
××××××××××

False

This is not an officially supported Google product.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bayeux_ml-0.1.6.tar.gz (27.8 kB view details)

Uploaded Source

Built Distribution

bayeux_ml-0.1.6-py3-none-any.whl (39.4 kB view details)

Uploaded Python 3

File details

Details for the file bayeux_ml-0.1.6.tar.gz.

File metadata

  • Download URL: bayeux_ml-0.1.6.tar.gz
  • Upload date:
  • Size: 27.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for bayeux_ml-0.1.6.tar.gz
Algorithm Hash digest
SHA256 2cf207a69fcb7ecf8cafde35fd4dd694c1dffe770039e688b7e30b20fb65c539
MD5 22e3aefb887439ad91045b53e3f0cb10
BLAKE2b-256 1dd9d47f52ee1f9fcaca90647a6db17be02abb24beff20f2295be4ffac972e5d

See more details on using hashes here.

Provenance

File details

Details for the file bayeux_ml-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: bayeux_ml-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 39.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for bayeux_ml-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 151b38cb3fcf83d4e475ea66ab2b6be93b05027e7aab5879a1d70c0c7dfac070
MD5 25e69174569f3773b2a8f7c402d7ad46
BLAKE2b-256 0c7f341098c37fcbe6b8bdfa86b990203310691859c363437a455645e89e3831

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page