Skip to main content

Blob Detection and Source Finder

Project description

PyBDSF (the Python Blob Detection and Source Finder) is a tool designed to decompose radio interferometry images into sources and make available their properties for further use. PyBDSF can decompose an image into a set of Gaussians, shapelets, or wavelets as well as calculate spectral indices and polarization properties of sources and measure the psf variation across an image. PyBDSF uses an interactive environment based on CASA that will be familiar to most radio astronomers. Additionally, PyBDSF may also be used in Python scripts.

The documentation is currently hosted at https://pybdsf.readthedocs.io

Installation

Installation can be done in a number of ways. In order of preference (read: ease of use):

  • Install the latest release from PyPI:

    pip install bdsf
  • Install the master branch from the PyBDSF git repository:

    pip install git+https://github.com/lofar-astron/PyBDSF.git

    Or install a specific revision or release, for example v1.9.3:

    pip install git+https://github.com/lofar-astron/PyBDSF.git@v1.9.3
  • Install from a local source tree, e.g. after you cloned the git repository:

    pip install .

    or (to install the interactive shell as well):

    pip install .[ishell]

If you get the error:

RuntimeError: module compiled against API version 0xf but this version of numpy is 0xd

then please update numpy with pip install -U numpy.

External requirements include the ubuntu packages (or similar packages in another Linux distribution):

  • gfortran

  • libboost-python-dev

  • libboost-numpy-dev (Only if boost > 1.63)

  • python-setuptools.

Also, a working numpy installation is required. At runtime, you will need scipy and either pyfits and pywcs or python-casacore or astropy.

If you install as a user not using conda, use pip install --user. Make sure to use similar versions for gcc, g++ and gfortran (use update-alternatives if multiple versions of gcc/g++/gfortran are present on the system). In this case, the script pybdsf is installed in ~/.local/bin, so you might want to add that to your $PATH.

Installation on MacOS / OSX is more involved, you will need the packages mentioned above, for example installed with Homebrew. You will need to tell setup.py to use the same compiler for fortran as for C++. In case of problems, see https://github.com/lofar-astron/PyBDSF/issues/104#issuecomment-509267088 for some possible steps to try.

https://github.com/lofar-astron/PyBDSF/actions/workflows/ci.yml/badge.svg?branch=master

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bdsf-1.11.0a2.tar.gz (366.4 kB view details)

Uploaded Source

Built Distributions

bdsf-1.11.0a2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

bdsf-1.11.0a2-cp312-cp312-macosx_12_0_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 macOS 12.0+ x86-64

bdsf-1.11.0a2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

bdsf-1.11.0a2-cp311-cp311-macosx_12_0_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

bdsf-1.11.0a2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

bdsf-1.11.0a2-cp310-cp310-macosx_12_0_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

bdsf-1.11.0a2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

bdsf-1.11.0a2-cp39-cp39-macosx_12_0_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

bdsf-1.11.0a2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

bdsf-1.11.0a2-cp38-cp38-macosx_12_0_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

File details

Details for the file bdsf-1.11.0a2.tar.gz.

File metadata

  • Download URL: bdsf-1.11.0a2.tar.gz
  • Upload date:
  • Size: 366.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for bdsf-1.11.0a2.tar.gz
Algorithm Hash digest
SHA256 725a8a28e5e4ff606d3507afdec9ae40483197b71309e26d61263a32d51e9e25
MD5 94db692e65e310e917c782bef92fffa7
BLAKE2b-256 8454daa1ab3c0fa7d1c276761de12e4ba3bdfc627a0682bad57ce18a29d25a61

See more details on using hashes here.

File details

Details for the file bdsf-1.11.0a2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bdsf-1.11.0a2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49857527f95b037b9900575543fa3ee9416451b34c502faebfeb6995bfcd602a
MD5 21ad34688276b24f5af5771129fb1b7e
BLAKE2b-256 d6fa1306f967e44f49c143581cbbe29119c905f472f969eb166fde8717a8c6a2

See more details on using hashes here.

File details

Details for the file bdsf-1.11.0a2-cp312-cp312-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for bdsf-1.11.0a2-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 38d39f1ef16c21fb6286ab1697986e1d87a3798849dcf7036df7a7ec7bc20fd8
MD5 0ba2fc77f3bfe91afa23e48773a9f719
BLAKE2b-256 c6498ab241cfadc4101435fc7c705a605713e2a16d2e794f2d99b23836b3c2e5

See more details on using hashes here.

File details

Details for the file bdsf-1.11.0a2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bdsf-1.11.0a2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b954e5b4db5f2ecd17e8ec8bc8c0d873c363495718835c337b3e20a1df4579e
MD5 194e4b52639be7c09d792d6c36e390d9
BLAKE2b-256 7cd68279434af25b5898c7a46d3f57d214df3177f199aff90d51d13d920e6ba3

See more details on using hashes here.

File details

Details for the file bdsf-1.11.0a2-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for bdsf-1.11.0a2-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 dd810ea2c642cef021559f64d98d85b5805293d1edb1acd044399da1246dc298
MD5 3d30a1ec7ab68ecddb5c669d9b86482c
BLAKE2b-256 58f878ff3a0e78a7b859a407f02290776e1ef1ea5203dab870cd3ee7093b492d

See more details on using hashes here.

File details

Details for the file bdsf-1.11.0a2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bdsf-1.11.0a2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea7656a5c58913ece4d26296eed15bac412ab32c4630e93d00f02316511f7327
MD5 651bd0466f63eb8ea7b1ad5ec0b9365c
BLAKE2b-256 8eecf81542cc872cf12f1c4775eb42ab247e5bc12901bd090a748b8aa16f8c8d

See more details on using hashes here.

File details

Details for the file bdsf-1.11.0a2-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for bdsf-1.11.0a2-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 1a1a7d1ed54b8320f9bf13e7d9c636f5bae0b4ad433bbdf526deceee79f66049
MD5 75ab4603bfdc8ce488a894ee1972c569
BLAKE2b-256 77245fda6b8698d6b261f8befc4d9b4c84e378e1f03a18f1a5865071ee865f49

See more details on using hashes here.

File details

Details for the file bdsf-1.11.0a2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bdsf-1.11.0a2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96e353a4c4b5c5569974604db22d83ce6f2679998fde53d5e487f0ab8879d894
MD5 d7fa03aecce20ffab03eb20353434cce
BLAKE2b-256 602f81cd7ad0998b12f81d6263b8a2778ed2ed6c720ec9ad7f4bad72b2847e5e

See more details on using hashes here.

File details

Details for the file bdsf-1.11.0a2-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for bdsf-1.11.0a2-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 322c73cc1aa3f171284b6b2976e55154812c0272b8e73dee8d0ad4e9d519e133
MD5 98901f0011e731f62fb78121c76da776
BLAKE2b-256 1730deb8799fa823918e2c55e89112884c4df6bd4525cc5468cc6eea3b89becb

See more details on using hashes here.

File details

Details for the file bdsf-1.11.0a2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bdsf-1.11.0a2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e57c158a155efdcef64044c5d0bfd963b10a48bf2805b839a92a7c4c0531163
MD5 9687378c5164666d2595cb31b67f6af0
BLAKE2b-256 b2328bafc61ee3d6dc199914ec530c3f061622d89d0babf6c346823b9d3a4831

See more details on using hashes here.

File details

Details for the file bdsf-1.11.0a2-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for bdsf-1.11.0a2-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 85e51beb072d62a038cf75039dfc2bb62cbdec3a5f4ca05fe4d0be433d33b1e2
MD5 572c766adebd9c3571bef913c1b07f9c
BLAKE2b-256 959a21a12f229a37263037805d982c114c3134bb97d6be2f07a3b20f40517bc6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page