Skip to main content

Parallel corpus classifier, indicating the likelihood of a pair of sentences being mutual translations or not

Project description

bicleaner

Bicleaner (bicleaner-classify) is a tool in Python that aims at detecting noisy sentence pairs in a parallel corpus. It indicates the likelihood of a pair of sentences being mutual translations (with a value near to 1) or not (with a value near to 0). Sentence pairs considered very noisy are scored with 0.

Although a training tool (bicleaner-train) is provided, you may want to use the available ready-to-use language packages. Please, visit https://github.com/bitextor/bitextor-data/tree/master/bicleaner to download the language packages and the documentation on how to use them.

Citation

If you find Bicleaner useful, please consider citing the following paper:

V. M. Sánchez-Cartagena, M. Bañón, S. Ortiz-Rojas and G. Ramírez-Sánchez,
"Prompsit's submission to WMT 2018 Parallel Corpus Filtering shared task",
in Proceedings of the Third Conference on Machine Translation, Volume 2: Shared Task Papers.
Brussels, Belgium: Association for Computational Linguistics, October 2018

@InProceedings{prompsit:2018:WMT,
  author    = { V\'{i}ctor M. S\'{a}nchez-Cartagena and Marta Ba{\~n}\'{o}n and Sergio Ortiz-Rojas and Gema Ram\'{i}rez-S\'{a}nchez},
  title     = {Prompsit's submission to WMT 2018 Parallel Corpus Filtering shared task},
  booktitle = {Proceedings of the Third Conference on Machine Translation, Volume 2: Shared Task Papers},
  month     = {October},
  year      = {2018},
  address   = {Brussels, Belgium},
  publisher = {Association for Computational Linguistics}
}

Installation & Requirements

Bicleaner works with Python3 and can be instaled with pip:

python3 -m pip install bicleaner

Extra modules will be downloaded and installed/upgraded as well, if required.

After installation, two binary files (bicleaner-train and bicleaner-classify) will be located in your python/installation/prefix/bin directory.

Cleaning

bicleaner-classify aims at detecting noisy sentence pairs in a parallel corpus. It indicates the likelihood of a pair of sentences being mutual translations (with a value near to 1) or not (with a value near to 0). Sentence pairs considered very noisy are scored with 0.

The input file (the parallel corpus to be classified) must contain at least four columns:

  • col1: URL 1
  • col2: URL 2
  • col3: Source sentence
  • col4: Target sentence

Any extra columns will be ignored.

The generated output file will contain the same lines and columns that the original input file had, adding an extra column containing the Bicleaner classifier score.

This tool can be run with

bicleaner-classify [-h] [--tmp_dir TMP_DIR] [-b BLOCK_SIZE]
                          [-p PROCESSES] [-d DISCARDED_TUS]
                          [--threshold THRESHOLD] [-q] [--debug]
                          [--logfile LOGFILE] [-v]
                          input [output] metadata

Parameters

  • positional arguments:
    • input: Tab-separated files to be classified (line format: URL1 URL2 SOURCE_SENTENCE TARGET_SENTENCE [EXTRA_COLUMNS], tab-separated)
    • output: Output of the classification (default: standard output)
    • metadata: Training metadata (YAML file), generated by bicleaner-train or downloaded as a part of a language pack.
  • optional arguments:
    • -h, --help: show this help message and exit
  • Optional:
    • --tmp_dir TMP_DIR: Temporary directory where creating the temporary files of this program (default: default system temp dir, defined by the environment variable TMPDIR in Unix)
    • -b BLOCK_SIZE, --block_size BLOCK_SIZE Sentence pairs per block (default: 10000)
    • -p PROCESSES, --processes PROCESSES: Number of processes to use (default: all CPUs minus one)
    • -d DISCARDED_TUS, --discarded_tus DISCARDED_TUS: TSV file with discarded TUs. Discarded TUs by the classifier are written in this file in TSV file. (default: None)
    • --threshold THRESHOLD: Threshold for classifier. If accuracy histogram is present in metadata, the interval for max value will be given as a default instead the current default. (default: 0.5)
  • Logging:
    • -q, --quiet: Silent logging mode (default: False)
    • --debug: Debug logging mode (default: False)
    • --logfile LOGFILE: Store log to a file (default: <_io.TextIOWrapper name='' mode='w' encoding='UTF-8'>)
    • -v, --version: show version of this script and exit

Example

bicleaner-classify  \
        corpus.en-es.raw  \
        corpus.en-es.classifed  \
        training.en-es.yaml 

This will read the "corpus.en-es.raw" file, classify it with the classifier indicated in the "training.en-es.yaml" metadata file, writing the result of the classification in the "corpus.en-es.classified" file. Each line of the new file will contain the same content as the input file, adding a column with the score given by the Bicleaner classifier.

Automatic test

We included a small test corpus and a script to check that your Bicleaner classifier is working as expected. In order to use it, just run:

python3 -m pytest -s tests/bicleaner_test.py

This will download a language pack, classify the test corpus, and check the resulting classified corpus. If everything went as expected, the output will be "q passed in XX.XX seconds". Every downloaded data will be removed at at the end of the testing session.

Training classifiers

In case you need to train a new classifier (i.e. because it is not available in the language packs provided in bitextor-data), you can use bicleaner-train . bicleaner-train is a Python3 tool that allows to train a classifier which predicts whether a pair of sentences are mutual translations or not. It can be used as follows:

 bicleaner-train [-h] -m METADATA -c CLASSIFIER -s SOURCE_LANG -t
                          TARGET_LANG -d SOURCE_DICTIONARY -D
                          TARGET_DICTIONARY [--normalize_by_length]
                          [--treat_oovs] [--qmax_limit QMAX_LIMIT]
                          [--disable_features_quest] [-g GOOD_EXAMPLES]
                          [-w WRONG_EXAMPLES]
                          [--good_test_examples GOOD_TEST_EXAMPLES]
                          [--wrong_test_examples WRONG_TEST_EXAMPLES]
                          [--classifier_type {svm,nn,nn1,adaboost,random_forest}]
                          [--dump_features DUMP_FEATURES] [-b BLOCK_SIZE]
                          [-p PROCESSES]
                          [--wrong_examples_file WRONG_EXAMPLES_FILE] [-q]
                          [--debug] [--logfile LOGFILE]
                          [input]

Parameters

  • positional arguments:
    • input: Tab-separated bilingual input file (default: Standard input)(line format: SOURCE_SENTENCE TARGET_SENTENCE, tab-separated)
  • optional arguments:
    • -h, --help: show this help message and exit
  • Mandatory:
    • -m METADATA, --metadata METADATA: Training metadata (YAML file)
    • -c CLASSIFIER, --classifier CLASSIFIER: Classifier data file
    • -s SOURCE_LANG, --source_lang SOURCE_LANG: Source language code
    • -t TARGET_LANG, --target_lang TARGET_LANG: Target language code
    • -d SOURCE_DICTIONARY, --source_dictionary SOURCE_DICTIONARY: LR gzipped probabilistic dictionary
    • -D TARGET_DICTIONARY, --target_dictionary TARGET_DICTIONARY: RL gzipped probabilistic dictionary
  • Options:
    • --normalize_by_length: Normalize by length in qmax dict feature
    • --treat_oovs: Special treatment for OOVs in qmax dict feature
    • --qmax_limit: Number of max target words to be taken into account, sorted by length (default: 20)
    • --disable_features_quest: Disable less important features
    • -g GOOD_EXAMPLES, --good_examples GOOD_EXAMPLES: Number of good examples (default: 50000)
    • -w WRONG_EXAMPLES, --wrong_examples WRONG_EXAMPLES: Number of wrong examples (default: 50000)
    • --good_test_examples GOOD_TEST_EXAMPLES: Number of good test examples (default: 2000)
    • --wrong_test_examples WRONG_TEST_EXAMPLES: Number of wrong test examples (default: 2000)
    • --classifier_type {svm,nn,nn1,adaboost,random_forest}: Classifier type (default: random_forest)
    • --dump_features DUMP_FEATURES: Dump training features to file (default: None)
    • -b BLOCK_SIZE, --block_size BLOCK_SIZE: Sentence pairs per block (default: 10000)
    • -p PROCESSES, --processes PROCESSES: Number of process to use (default: all CPUs minus one)
    • --wrong_examples_file WRONG_EXAMPLES_FILE: File with wrong examples extracted to replace the synthetic examples from method used by default (default: None)
  • Logging:
    • -q, --quiet: Silent logging mode (default: False)
    • --debug: Debug logging mode (default: False)
    • --logfile LOGFILE: Store log to a file (default: <_io.TextIOWrapper name='' mode='w' encoding='UTF-8'>)

Example

bicleaner-train \
          corpus.en-cs.train\
          --treat_oovs \
          --normalize_by_length \
          -s en \
          -t cs \
          -d dict-en.gz \
          -D dict-cs.gz \
          -b  1000 \
          -c en-cs.classifier \
          -g 50000 \
          -w 50000 \
          -m training.en-cs.yaml \
          --classifier_type random_forest

This will train a Random Forest classifier for english-czech using the corpus corpus.en-cs.train and the probabilistic dictionaries dict-en.gz and dict-cs.gz. This training will use 50000 good and 50000 bad examples, and a block size of 1000 sentences. The classifier data will be stored in en-cs.classifier, with the metadata in training.en-cs.yaml.

The generated .yaml file provides the following information, that is useful to get a sense on how good or bad was the training (and is also a needed input file for classifying):

classifier: en-cs.classifier
classifier_type: random_forest
source_lang: en
target_lang: cs
source_dictionary: dict-en.gz
target_dictionary: dict-cs.gz
normalize_by_length: True
treat_oovs: True
qmax_limit: 20
disable_features_quest: True
good_examples: 50000
wrong_examples: 50000
good_test_examples: 2000
wrong_test_examples: 2000
good_test_histogram: [0, 2, 18, 83, 217, 450, 1596, 7245, 389, 0]
wrong_test_histogram: [3, 3114, 3949, 2309, 516, 86, 22, 1, 0, 0]
precision_histogram: [0.5000000, 0.5000750, 0.5922635, 0.7728047, 0.9406006, 0.9888651, 0.9975143, 0.9998690, 1.0000000, nan]
recall_histogram: [1.0000000, 1.0000000, 0.9998000, 0.9980000, 0.9897000, 0.9680000, 0.9230000, 0.7634000, 0.0389000, 0.0000000]
accuracy_histogram: [0.5000000, 0.5001500, 0.6557500, 0.8523000, 0.9636000, 0.9785500, 0.9603500, 0.8816500, 0.5194500, 0.5000000]
length_ratio: 0.9049934

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bicleaner-0.10.4.tar.gz (24.9 kB view details)

Uploaded Source

Built Distribution

bicleaner-0.10.4-py3-none-any.whl (38.8 kB view details)

Uploaded Python 3

File details

Details for the file bicleaner-0.10.4.tar.gz.

File metadata

  • Download URL: bicleaner-0.10.4.tar.gz
  • Upload date:
  • Size: 24.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.5.2

File hashes

Hashes for bicleaner-0.10.4.tar.gz
Algorithm Hash digest
SHA256 df922d8ca9c5250c28a6ba368538854de5ac4cc175fad9271ce9d6fbff352057
MD5 00b14ed7ed4284136e3a51da4cfc3782
BLAKE2b-256 d298fd3f669072d9b97a12b712b2f4a56bfd3ce2174367157882bff41e4f62b4

See more details on using hashes here.

File details

Details for the file bicleaner-0.10.4-py3-none-any.whl.

File metadata

  • Download URL: bicleaner-0.10.4-py3-none-any.whl
  • Upload date:
  • Size: 38.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.5.2

File hashes

Hashes for bicleaner-0.10.4-py3-none-any.whl
Algorithm Hash digest
SHA256 2174dc6cc832fb4f2910589e216c508e86ef77280f8f7bd07528d4ae4b3be35a
MD5 4b148e7186228969c7477a02a03cc9c1
BLAKE2b-256 abea923ffd8c7a86c6bfc5ee6544c2a30e830ca4d03c71c567b7de13781e266d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page