Skip to main content

Flexible and fast sampling in Python

Project description

BlackJAX

Continuous integration codecov PyPI version

What is BlackJAX?

BlackJAX is a library of samplers for JAX that works on CPU as well as GPU.

It is not a probabilistic programming library. However it integrates really well with PPLs as long as they can provide a (potentially unnormalized) log-probability density function compatible with JAX.

Who should use BlackJAX?

BlackJAX should appeal to those who:

  • Have a logpdf and just need a sampler;
  • Need more than a general-purpose sampler;
  • Want to sample on GPU;
  • Want to build upon robust elementary blocks for their research;
  • Are building a probabilistic programming language;
  • Want to learn how sampling algorithms work.

Quickstart

Installation

You can install BlackJAX using pip:

pip install blackjax

or via conda-forge:

conda install -c conda-forge blackjax

Nightly builds (bleeding edge) of Blackjax can also be installed using pip:

pip install blackjax-nightly

BlackJAX is written in pure Python but depends on XLA via JAX. By default, the version of JAX that will be installed along with BlackJAX will make your code run on CPU only. If you want to use BlackJAX on GPU/TPU we recommend you follow these instructions to install JAX with the relevant hardware acceleration support.

Example

Let us look at a simple self-contained example sampling with NUTS:

import jax
import jax.numpy as jnp
import jax.scipy.stats as stats
import numpy as np

import blackjax

observed = np.random.normal(10, 20, size=1_000)
def logdensity_fn(x):
    logpdf = stats.norm.logpdf(observed, x["loc"], x["scale"])
    return jnp.sum(logpdf)

# Build the kernel
step_size = 1e-3
inverse_mass_matrix = jnp.array([1., 1.])
nuts = blackjax.nuts(logdensity_fn, step_size, inverse_mass_matrix)

# Initialize the state
initial_position = {"loc": 1., "scale": 2.}
state = nuts.init(initial_position)

# Iterate
rng_key = jax.random.key(0)
for _ in range(100):
    rng_key, nuts_key = jax.random.split(rng_key)
    state, _ = nuts.step(nuts_key, state)

See the documentation for more examples of how to use the library: how to write inference loops for one or several chains, how to use the Stan warmup, etc.

Philosophy

What is BlackJAX?

BlackJAX bridges the gap between "one liner" frameworks and modular, customizable libraries.

Users can import the library and interact with robust, well-tested and performant samplers with a few lines of code. These samplers are aimed at PPL developers, or people who have a logpdf and just need a sampler that works.

But the true strength of BlackJAX lies in its internals and how they can be used to experiment quickly on existing or new sampling schemes. This lower level exposes the building blocks of inference algorithms: integrators, proposal, momentum generators, etc and makes it easy to combine them to build new algorithms. It provides an opportunity to accelerate research on sampling algorithms by providing robust, performant and reusable code.

Why BlackJAX?

Sampling algorithms are too often integrated into PPLs and not decoupled from the rest of the framework, making them hard to use for people who do not need the modeling language to build their logpdf. Their implementation is most of the time monolithic and it is impossible to reuse parts of the algorithm to build custom kernels. BlackJAX solves both problems.

How does it work?

BlackJAX allows to build arbitrarily complex algorithms because it is built around a very general pattern. Everything that takes a state and returns a state is a transition kernel, and is implemented as:

new_state, info =  kernel(rng_key, state)

kernels are stateless functions and all follow the same API; state and information related to the transition are returned separately. They can thus be easily composed and exchanged. We specialize these kernels by closure instead of passing parameters.

Contributions

Please follow our short guide.

Citing Blackjax

To cite this repository:

@software{blackjax2020github,
  author = {Cabezas, Alberto, Lao, Junpeng, and Louf, R\'emi},
  title = {{B}lackjax: A sampling library for {JAX}},
  url = {http://github.com/blackjax-devs/blackjax},
  version = {<insert current release tag>},
  year = {2023},
}

In the above bibtex entry, names are in alphabetical order, the version number should be the last tag on the main branch.

Acknowledgements

Some details of the NUTS implementation were largely inspired by Numpyro's.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blackjax-nightly-1.0.0.post24.tar.gz (300.0 kB view details)

Uploaded Source

Built Distribution

blackjax_nightly-1.0.0.post24-py3-none-any.whl (312.1 kB view details)

Uploaded Python 3

File details

Details for the file blackjax-nightly-1.0.0.post24.tar.gz.

File metadata

File hashes

Hashes for blackjax-nightly-1.0.0.post24.tar.gz
Algorithm Hash digest
SHA256 7342ebf36e669b93f9ed581c973186283952571d2f3a864d9c395ddefb8e410b
MD5 4227a49d9a7f8a6fc085c58517a2b69c
BLAKE2b-256 1d25f82f5ee9d2ae86802629f8c5ee3921e22339342c97c08f2fed9b4089e75c

See more details on using hashes here.

File details

Details for the file blackjax_nightly-1.0.0.post24-py3-none-any.whl.

File metadata

File hashes

Hashes for blackjax_nightly-1.0.0.post24-py3-none-any.whl
Algorithm Hash digest
SHA256 5689d15af778913e5bb709014309fa38fef7ad46bd2dcd40122aba7fc3563fd4
MD5 299a359ee91a102c4cd12fe81a377a14
BLAKE2b-256 fe40cce116930e6ae032c0e5443d25c3cdaa7152040815b60a1ffa8fd865207f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page