Skip to main content

Python wrapper of lightning fast Finite State Machine based NLP library.

Project description

Bling Fire

Introduction

Hi, we are a team at Microsoft called Bling (Beyond Language Understanding), we help Bing be smarter. Here we wanted to share with all of you our FInite State machine and REgular expression manipulation library (FIRE). We use Fire for many linguistic operations inside Bing such as Tokenization, Multi-word expression matching, Unknown word-guessing, Stemming / Lemmatization just to mention a few.

Bling Fire Tokenizer Overview

Bling Fire Tokenizer provides state of the art performance for Natural Language text tokenization. Bling Fire supports the following tokenization algorithms:

  1. Pattern-based tokenization
  2. WordPiece tokenization
  3. SentencePiece Unigram LM
  4. SentencePiece BPE
  5. Induced/learned syllabification patterns (identifies possible hyphenation points within a token)

Bling Fire provides uniform interface for working with all four algorithms so there is no difference for the client whether to use tokenizer for XLNET, BERT or your own custom model.

Model files describe the algorithms they are built for and are loaded on demand from external file. There are also two default models for NLTK-style tokenization and sentence breaking, which does not need to be loaded. The default tokenization model follows logic of NLTK, except hyphenated words are split and a few "errors" are fixed.

Normalization can be added to each model, but is optional.

Diffrences between algorithms are summarized here.

Bling Fire Tokenizer high level API designed in a way that it requires minimal or no configuration, or initialization, or additional files and is friendly for use from languages like Python, Ruby, Rust, C#, JavaScript (via WASM), etc.

We have precompiled some popular models and listed with the source code reference below:

File Name Models it should be used for Algorithm Source Code
wbd.bin Default Tokenization Model Pattern-based src
sbd.bin Default model for Sentence breaking Pattern-based src
bert_base_tok.bin BERT Base/Large WordPiece src
bert_base_cased_tok.bin BERT Base/Large Cased WordPiece src
bert_chinese.bin BERT Chinese WordPiece src
bert_multi_cased.bin BERT Multi Lingual Cased WordPiece src
xlnet.bin XLNET Tokenization Model Unigram LM src
xlnet_nonorm.bin XLNET Tokenization Model /wo normalization Unigram LM src
bpe_example.bin A model to test BPE tokenization BPE src
xlm_roberta_base.bin XLM Roberta Tokenization Unigram LM src
laser(100k|250k|500k).bin Trained on balanced by language WikiMatrix corpus of 80+ languages Unigram LM src
uri(100k|250k|500k).bin URL tokenization model trained on a large set of random URLs from the web Unigram LM src
gpt2.bin Byte-BPE tokenization model for GPT-2 byte BPE src
roberta.bin Byte-BPE tokenization model for Roberta model byte BPE src
syllab.bin Multi lingual model to identify allowed hyphenation points inside a word. W2H src

Oh yes, it is also the fastest! We did a comparison of Bling Fire with tokenizers from Hugging Face, Bling Fire runs 4-5 times faster than Hugging Face Tokenizers, see also Bing Blog Post. We did comparison of Bling Fire Unigram LM and BPE implementaion to the same one in SentencePiece library and our implementation is ~2x faster, see XLNET benchmark and BPE benchmark. Not to mention our default models are 10x faster than the same functionality from SpaCy, see benchmark wiki and this Bing Blog Post.

So if low latency inference is what you need then you have to try Bling Fire!

Python API Description

If you simply want to use it in Python, you can install the latest release using pip:

pip install -U blingfire

Examples

1. Python example, using default pattern-based tokenizer:

from blingfire import *

text = 'After reading this post, you will know: What "natural language" is and how it is different from other types of data. What makes working with natural language so challenging. [1]'

print(text_to_sentences(text))
print(text_to_words(text))

Expected output:

After reading this post, you will know: What "natural language" is and how it is different from other types of data.
What makes working with natural language so challenging. [1]
After reading this post , you will know : What " natural language " is and how it is different from other types of data . What makes working with natural language so challenging . [ 1 ]

2. Python example, load a custom model for a pattern-based tokenizer:

from blingfire import *

# load a custom model from file
h = load_model("./wbd_chuni.bin")

text = 'This is the Bling-Fire tokenizer. 2007年9月日历表_2007年9月农历阳历一览表-万年历'

# custom model output
print(text_to_words_with_model(h, text))

# default model output
print(text_to_words(text))

free_model(h)

Expected output:

This is the Bling - Fire tokenizer . 2007 年 9 月 日 历 表 _2007 年 9 月 农 历 阳 历 一 览 表 - 万 年 历
This is the Bling - Fire tokenizer . 2007年9月日历表_2007年9月农历阳历一览表 - 万年历

3. Python example, calling BERT BASE tokenizer

On one thread, it works 14x faster than orignal BERT tokenizer written in Python. Given this code is written in C++ it can be called from multiple threads without blocking on global interpreter lock thus achieving higher speed-ups for batch mode.

import os
import blingfire

s = "Эpple pie. How do I renew my virtual smart card?: /Microsoft IT/ 'virtual' smart card certificates for DirectAccess are valid for one year. In order to get to microsoft.com we need to type pi@1.2.1.2."

# one time load the model (we are using the one that comes with the package)
h = blingfire.load_model(os.path.join(os.path.dirname(blingfire.__file__), "bert_base_tok.bin"))
print("Model Handle: %s" % h)

# use the model from one or more threads
print(s)
ids = blingfire.text_to_ids(h, s, 128, 100)  # sequence length: 128, oov id: 100
print(ids)                                   # returns a numpy array of length 128 (padded or trimmed)

# free the model at the end
blingfire.free_model(h)
print("Model Freed")

Expected output:

Model Handle: 2854016629088
Эpple pie. How do I renew my virtual smart card?: /Microsoft IT/ 'virtual' smart card certificates for DirectAccess are valid for one year. In order to get to microsoft.com we need to type pi@1.2.1.2.
[ 1208  9397  2571 11345  1012  2129  2079  1045 20687  2026  7484  6047
  4003  1029  1024  1013  7513  2009  1013  1005  7484  1005  6047  4003
 17987  2005  3622  6305  9623  2015  2024  9398  2005  2028  2095  1012
  1999  2344  2000  2131  2000  7513  1012  4012  2057  2342  2000  2828
 14255  1030  1015  1012  1016  1012  1015  1012  1016  1012     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0]
Model Freed

Supported Platforms

Bling Fire is supported for Windows, Linux and Mac (Thanks to Andrew Kane!)

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Working Branch

To contribute directly to code base, you should create a personal fork and create feature branches there when you need them. This keeps the main repository clean and your personal workflow out of sight.

Pull Request

Before we can accept a pull request from you, you'll need to sign a Contributor License Agreement (CLA). It is an automated process and you only need to do it once.

However, you don't have to do this up-front. You can simply clone, fork, and submit your pull-request as usual. When your pull-request is created, it is classified by a CLA bot. If the change is trivial (i.e. you just fixed a typo) then the PR is labelled with cla-not-required. Otherwise, it's classified as cla-required. In that case, the system will also tell you how you can sign the CLA. Once you have signed a CLA, the current and all future pull-requests will be labelled as cla-signed.

To enable us to quickly review and accept your pull requests, always create one pull request per issue and link the issue in the pull request if possible. Never merge multiple requests in one unless they have the same root cause. Besides, keep code changes as small as possible and avoid pure formatting changes to code that has not been modified otherwise.

Feedback

Reporting Security Issues

Security issues and bugs should be reported privately, via email, to the Microsoft Security Response Center (MSRC) at secure@microsoft.com. You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Further information, including the MSRC PGP key, can be found in the Security TechCenter.

License

Copyright (c) Microsoft Corporation. All rights reserved.

Licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blingfire-0.1.7.tar.gz (28.9 MB view details)

Uploaded Source

Built Distribution

blingfire-0.1.7-py3-none-any.whl (29.1 MB view details)

Uploaded Python 3

File details

Details for the file blingfire-0.1.7.tar.gz.

File metadata

  • Download URL: blingfire-0.1.7.tar.gz
  • Upload date:
  • Size: 28.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/54.1.2 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/3.7.6

File hashes

Hashes for blingfire-0.1.7.tar.gz
Algorithm Hash digest
SHA256 7a5e8e53aafd5785bd00d40a59d4c24e2c43333644d031aa93df3fe7978a8df7
MD5 1263acc8682cd663dce572bf67948873
BLAKE2b-256 9a3172de03e345fa58f35197ae7dc89ddb3de3fc98499da4932716c503b28041

See more details on using hashes here.

File details

Details for the file blingfire-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: blingfire-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 29.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/54.1.2 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/3.7.6

File hashes

Hashes for blingfire-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 c539169a5b3614f880b82272b654cf5126ee98b3d251cb19a7b1808b3e6c82ba
MD5 ef1b0bd8c75b1892dd8a5f3b01d94847
BLAKE2b-256 1430a78e9ba3e7f7d3d760936619d6cb88da0d3bc2e33dc64912f5a018e7d3bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page