Skip to main content

Blosc data compressor

Project description

python-blosc: a Python wrapper for the extremely fast Blosc compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc

URL:

http://python-blosc.blosc.org

PyPi:

version

Anaconda:

anaconda

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (http://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc a Python package that wraps Blosc. python-blosc supports Python 3.6 or higher versions.

Installing

You can install binary packages with conda:

$ conda install -c conda-forge python-blosc

Or, install it as a typical Python source package (requires c-compiler and Python headers) from PyPi using pip:

$ pip install blosc

Documentation

The Sphinx based documentation is here:

http://python-blosc.blosc.org

Also, some examples are available on python-blosc wiki page:

http://github.com/blosc/python-blosc/wiki

Lastly, here is the recording and the slides from the talk “Compress me stupid” at the EuroPython 2014.

Building

If you need more control, there are different ways to compile python-blosc, depending if you want to link with an already installed Blosc library or not.

Installing via setuptools

python-blosc comes with the Blosc sources with it and can be built with:

$ python -m pip install -r requirements-dev.txt
$ python setup.py build_ext --inplace

Any codec can be enabled (=1) or disabled (=0) on this build-path with the appropriate OS environment variables INCLUDE_LZ4, INCLUDE_SNAPPY, INCLUDE_ZLIB, and INCLUDE_ZLIB. By default all the codecs in Blosc are enabled except Snappy (due to some issues with C++ with the gcc toolchain).

Compiler specific optimisations are automatically enabled by inspecting the CPU flags building Blosc. They can be manually disabled by setting the following environmental variables: DISABLE_BLOSC_SSE2 and DISABLE_BLOSC_AVX2.

setuptools is limited to using the compiler specified in the environment variable CC which on posix systems is usually gcc. This often causes trouble with the Snappy codec, which is written in C++, and as a result Snappy is no longer compiled by default. This problem is not known to affect MSVC or clang. Snappy is considered optional in Blosc as its compression performance is below that of the other codecs.

That’s all. You can proceed with testing section now.

Compiling with an installed Blosc library

This approach uses pre-built, fully optimized versions of Blosc built via CMake.

Go to https://github.com/Blosc/c-blosc/releases and download and install the C-Blosc library. Then, you can tell python-blosc where is the C-Blosc library in a couple of ways:

Using an environment variable:

$ BLOSC_DIR=/usr/local     (or "set BLOSC_DIR=\blosc" on Win)
$ export BLOSC_DIR         (not needed on Win)
$ python setup.py build_clib
$ python setup.py build_ext --inplace

Using a flag:

$ python setup.py build_clib
$ python setup.py build_ext --inplace --blosc=/usr/local

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

$ PYTHONPATH=.   (or "set PYTHONPATH=." on Win)
$ export PYTHONPATH=.  (not needed on Win)
$ python blosc/test.py  (add -v for verbose mode)

Or alternatively, you can use the third-party nosetests script:

$ nosetests --with-doctest (add -v for verbose mode)

Once installed, you can re-run the tests at any time with:

$ python -c "import blosc; blosc.test()"

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

$ PYTHONPATH=. python bench/compress_ptr.py

Just to whet your appetite, here are the results for an Intel Xeon E5-2695 v3 @ 2.30GHz, running Python 3.5, CentOS 7, but YMMV (and will vary!):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.5.1.dev0
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.7
  Zstd: 1.1.2
Python version: 3.5.2 |Continuum Analytics, Inc.| (default, Jul  2 2016, 17:53:06)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
Platform: Linux-3.10.0-327.18.2.el7.x86_64-x86_64 (#1 SMP Thu May 12 11:03:55 UTC 2016)
Linux dist: CentOS Linux 7.2.1511
Processor: x86_64
Byte-ordering: little
Detected cores: 56
Number of threads to use by default: 4
  -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** ctypes.memmove() *** Time for memcpy(): 0.276 s (2.70 GB/s)

Times for compressing/decompressing with clevel=5 and 24 threads

*** the arange linear distribution ***
  *** blosclz , noshuffle  ***  0.382 s (1.95 GB/s) / 0.300 s (2.48 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.042 s (17.77 GB/s) / 0.027 s (27.18 GB/s)   Compr. ratio:  57.1x
  *** blosclz , bitshuffle ***  0.094 s (7.94 GB/s) / 0.041 s (18.28 GB/s)    Compr. ratio:  74.0x
  *** lz4     , noshuffle  ***  0.156 s (4.79 GB/s) / 0.052 s (14.30 GB/s)    Compr. ratio:   2.0x
  *** lz4     , shuffle    ***  0.033 s (22.58 GB/s) / 0.034 s (22.03 GB/s)   Compr. ratio:  68.6x
  *** lz4     , bitshuffle ***  0.059 s (12.63 GB/s) / 0.053 s (14.18 GB/s)   Compr. ratio:  33.1x
  *** lz4hc   , noshuffle  ***  0.443 s (1.68 GB/s) / 0.070 s (10.62 GB/s)    Compr. ratio:   2.0x
  *** lz4hc   , shuffle    ***  0.102 s (7.31 GB/s) / 0.029 s (25.42 GB/s)    Compr. ratio:  97.5x
  *** lz4hc   , bitshuffle ***  0.206 s (3.62 GB/s) / 0.038 s (19.85 GB/s)    Compr. ratio: 180.5x
  *** snappy  , noshuffle  ***  0.154 s (4.84 GB/s) / 0.056 s (13.28 GB/s)    Compr. ratio:   2.0x
  *** snappy  , shuffle    ***  0.044 s (16.89 GB/s) / 0.047 s (15.95 GB/s)   Compr. ratio:  17.4x
  *** snappy  , bitshuffle ***  0.064 s (11.58 GB/s) / 0.061 s (12.26 GB/s)   Compr. ratio:  18.2x
  *** zlib    , noshuffle  ***  1.172 s (0.64 GB/s) / 0.135 s (5.50 GB/s)     Compr. ratio:   5.3x
  *** zlib    , shuffle    ***  0.260 s (2.86 GB/s) / 0.086 s (8.67 GB/s)     Compr. ratio: 120.8x
  *** zlib    , bitshuffle ***  0.262 s (2.84 GB/s) / 0.094 s (7.96 GB/s)     Compr. ratio: 260.1x
  *** zstd    , noshuffle  ***  0.973 s (0.77 GB/s) / 0.093 s (8.00 GB/s)     Compr. ratio:   7.8x
  *** zstd    , shuffle    ***  0.093 s (7.97 GB/s) / 0.023 s (32.71 GB/s)    Compr. ratio: 156.7x
  *** zstd    , bitshuffle ***  0.115 s (6.46 GB/s) / 0.029 s (25.60 GB/s)    Compr. ratio: 320.6x

*** the linspace linear distribution ***
  *** blosclz , noshuffle  ***  0.341 s (2.19 GB/s) / 0.291 s (2.56 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.132 s (5.65 GB/s) / 0.023 s (33.10 GB/s)    Compr. ratio:   2.0x
  *** blosclz , bitshuffle ***  0.166 s (4.50 GB/s) / 0.036 s (20.89 GB/s)    Compr. ratio:   2.8x
  *** lz4     , noshuffle  ***  0.142 s (5.26 GB/s) / 0.028 s (27.07 GB/s)    Compr. ratio:   1.0x
  *** lz4     , shuffle    ***  0.093 s (8.01 GB/s) / 0.030 s (24.87 GB/s)    Compr. ratio:   3.4x
  *** lz4     , bitshuffle ***  0.102 s (7.31 GB/s) / 0.039 s (19.13 GB/s)    Compr. ratio:   5.3x
  *** lz4hc   , noshuffle  ***  0.700 s (1.06 GB/s) / 0.044 s (16.77 GB/s)    Compr. ratio:   1.1x
  *** lz4hc   , shuffle    ***  0.203 s (3.67 GB/s) / 0.021 s (36.22 GB/s)    Compr. ratio:   8.6x
  *** lz4hc   , bitshuffle ***  0.342 s (2.18 GB/s) / 0.028 s (26.50 GB/s)    Compr. ratio:  14.2x
  *** snappy  , noshuffle  ***  0.271 s (2.75 GB/s) / 0.274 s (2.72 GB/s)     Compr. ratio:   1.0x
  *** snappy  , shuffle    ***  0.099 s (7.54 GB/s) / 0.042 s (17.55 GB/s)    Compr. ratio:   4.2x
  *** snappy  , bitshuffle ***  0.127 s (5.86 GB/s) / 0.043 s (17.20 GB/s)    Compr. ratio:   6.1x
  *** zlib    , noshuffle  ***  1.525 s (0.49 GB/s) / 0.158 s (4.70 GB/s)     Compr. ratio:   1.6x
  *** zlib    , shuffle    ***  0.346 s (2.15 GB/s) / 0.098 s (7.59 GB/s)     Compr. ratio:  10.7x
  *** zlib    , bitshuffle ***  0.420 s (1.78 GB/s) / 0.104 s (7.20 GB/s)     Compr. ratio:  18.0x
  *** zstd    , noshuffle  ***  1.061 s (0.70 GB/s) / 0.096 s (7.79 GB/s)     Compr. ratio:   1.9x
  *** zstd    , shuffle    ***  0.203 s (3.68 GB/s) / 0.052 s (14.21 GB/s)    Compr. ratio:  14.2x
  *** zstd    , bitshuffle ***  0.251 s (2.97 GB/s) / 0.047 s (15.84 GB/s)    Compr. ratio:  22.2x

*** the random distribution ***
  *** blosclz , noshuffle  ***  0.340 s (2.19 GB/s) / 0.285 s (2.61 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.091 s (8.21 GB/s) / 0.017 s (44.29 GB/s)    Compr. ratio:   3.9x
  *** blosclz , bitshuffle ***  0.080 s (9.27 GB/s) / 0.029 s (26.12 GB/s)    Compr. ratio:   6.1x
  *** lz4     , noshuffle  ***  0.150 s (4.95 GB/s) / 0.027 s (28.05 GB/s)    Compr. ratio:   2.4x
  *** lz4     , shuffle    ***  0.068 s (11.02 GB/s) / 0.029 s (26.03 GB/s)   Compr. ratio:   4.5x
  *** lz4     , bitshuffle ***  0.063 s (11.87 GB/s) / 0.054 s (13.70 GB/s)   Compr. ratio:   6.2x
  *** lz4hc   , noshuffle  ***  0.645 s (1.15 GB/s) / 0.019 s (39.22 GB/s)    Compr. ratio:   3.5x
  *** lz4hc   , shuffle    ***  0.257 s (2.90 GB/s) / 0.022 s (34.62 GB/s)    Compr. ratio:   5.1x
  *** lz4hc   , bitshuffle ***  0.128 s (5.80 GB/s) / 0.029 s (25.52 GB/s)    Compr. ratio:   6.2x
  *** snappy  , noshuffle  ***  0.164 s (4.54 GB/s) / 0.048 s (15.46 GB/s)    Compr. ratio:   2.2x
  *** snappy  , shuffle    ***  0.082 s (9.09 GB/s) / 0.043 s (17.39 GB/s)    Compr. ratio:   4.3x
  *** snappy  , bitshuffle ***  0.071 s (10.48 GB/s) / 0.046 s (16.08 GB/s)   Compr. ratio:   5.0x
  *** zlib    , noshuffle  ***  1.223 s (0.61 GB/s) / 0.093 s (7.97 GB/s)     Compr. ratio:   4.0x
  *** zlib    , shuffle    ***  0.636 s (1.17 GB/s) / 0.126 s (5.89 GB/s)     Compr. ratio:   5.5x
  *** zlib    , bitshuffle ***  0.327 s (2.28 GB/s) / 0.109 s (6.81 GB/s)     Compr. ratio:   6.2x
  *** zstd    , noshuffle  ***  1.432 s (0.52 GB/s) / 0.103 s (7.27 GB/s)     Compr. ratio:   4.2x
  *** zstd    , shuffle    ***  0.388 s (1.92 GB/s) / 0.031 s (23.71 GB/s)    Compr. ratio:   5.9x
  *** zstd    , bitshuffle ***  0.127 s (5.86 GB/s) / 0.033 s (22.77 GB/s)    Compr. ratio:   6.4x

Also, Blosc works quite well on ARM processors (even without NEON support yet):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.4.4
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.8
  Zstd: 1.1.2
Python version: 3.6.0 (default, Dec 31 2016, 21:20:16)
[GCC 4.9.2]
Platform: Linux-3.4.113-sun8i-armv7l (#50 SMP PREEMPT Mon Nov 14 08:41:55 CET 2016)
Linux dist: debian 9.0
Processor: not recognized
Byte-ordering: little
Detected cores: 4
Number of threads to use by default: 4
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
  *** ctypes.memmove() *** Time for memcpy():   0.015 s (93.57 MB/s)

Times for compressing/decompressing with clevel=5 and 4 threads

*** user input ***
  *** blosclz , noshuffle  ***  0.015 s (89.93 MB/s) / 0.010 s (138.32 MB/s)    Compr. ratio:   2.7x
  *** blosclz , shuffle    ***  0.023 s (60.25 MB/s) / 0.012 s (112.71 MB/s)    Compr. ratio:   2.3x
  *** blosclz , bitshuffle ***  0.018 s (77.63 MB/s) / 0.021 s (66.76 MB/s)     Compr. ratio:   7.3x
  *** lz4     , noshuffle  ***  0.008 s (177.14 MB/s) / 0.009 s (159.00 MB/s)   Compr. ratio:   3.6x
  *** lz4     , shuffle    ***  0.010 s (131.29 MB/s) / 0.012 s (117.69 MB/s)   Compr. ratio:   3.5x
  *** lz4     , bitshuffle ***  0.015 s (89.97 MB/s) / 0.022 s (63.62 MB/s)     Compr. ratio:   8.4x
  *** lz4hc   , noshuffle  ***  0.071 s (19.30 MB/s) / 0.007 s (186.64 MB/s)    Compr. ratio:   8.6x
  *** lz4hc   , shuffle    ***  0.079 s (17.30 MB/s) / 0.014 s (95.99 MB/s)     Compr. ratio:   6.2x
  *** lz4hc   , bitshuffle ***  0.062 s (22.23 MB/s) / 0.027 s (51.53 MB/s)     Compr. ratio:   9.7x
  *** snappy  , noshuffle  ***  0.008 s (173.87 MB/s) / 0.009 s (148.77 MB/s)   Compr. ratio:   4.4x
  *** snappy  , shuffle    ***  0.011 s (123.22 MB/s) / 0.016 s (85.16 MB/s)    Compr. ratio:   4.4x
  *** snappy  , bitshuffle ***  0.015 s (89.02 MB/s) / 0.021 s (64.87 MB/s)     Compr. ratio:   6.2x
  *** zlib    , noshuffle  ***  0.047 s (29.26 MB/s) / 0.011 s (121.83 MB/s)    Compr. ratio:  14.7x
  *** zlib    , shuffle    ***  0.080 s (17.20 MB/s) / 0.022 s (63.61 MB/s)     Compr. ratio:   9.4x
  *** zlib    , bitshuffle ***  0.059 s (23.50 MB/s) / 0.033 s (41.10 MB/s)     Compr. ratio:  10.5x
  *** zstd    , noshuffle  ***  0.113 s (12.21 MB/s) / 0.011 s (124.64 MB/s)    Compr. ratio:  15.6x
  *** zstd    , shuffle    ***  0.154 s (8.92 MB/s) / 0.026 s (52.56 MB/s)      Compr. ratio:   9.9x
  *** zstd    , bitshuffle ***  0.116 s (11.86 MB/s) / 0.036 s (38.40 MB/s)     Compr. ratio:  11.4x

For details on the ARM benchmark see: https://github.com/Blosc/python-blosc/issues/105

In case you find your own results interesting, please report them back to the authors!

License

The software is licenses under a 3-Clause BSD licsense. A copy of the python-blosc license can be found in LICENSE.txt. A copy of all licenses can be found in LICENSES/.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

http://groups.google.es/group/blosc


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc-1.10.0.tar.gz (845.3 kB view details)

Uploaded Source

Built Distributions

blosc-1.10.0-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc-1.10.0-cp39-cp39-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

blosc-1.10.0-cp39-cp39-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

blosc-1.10.0-cp39-cp39-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

blosc-1.10.0-cp39-cp39-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9

blosc-1.10.0-cp39-cp39-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.9

blosc-1.10.0-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc-1.10.0-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc-1.10.0-cp38-cp38-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

blosc-1.10.0-cp38-cp38-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

blosc-1.10.0-cp38-cp38-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

blosc-1.10.0-cp38-cp38-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8

blosc-1.10.0-cp38-cp38-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.8

blosc-1.10.0-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

blosc-1.10.0-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

blosc-1.10.0-cp37-cp37m-win32.whl (1.3 MB view details)

Uploaded CPython 3.7m Windows x86

blosc-1.10.0-cp37-cp37m-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

blosc-1.10.0-cp37-cp37m-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

blosc-1.10.0-cp37-cp37m-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m

blosc-1.10.0-cp37-cp37m-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m

blosc-1.10.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file blosc-1.10.0.tar.gz.

File metadata

  • Download URL: blosc-1.10.0.tar.gz
  • Upload date:
  • Size: 845.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0.tar.gz
Algorithm Hash digest
SHA256 0c241f6065f3a9e55e74fa43e4accab0f0a0efe921896f69e04c65f3c92de6ef
MD5 845ec1d7a425408bacefbcaa5a988f94
BLAKE2b-256 fc47e3e70d4e175d303e06c7198a2834e369e1caa8b1ff1f178751aba1f64c56

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3adc610ab39fc0bc28fe85a1a343da03cb6e862d21f7831a389bc3fc53f386c9
MD5 fbc15cd0f633802f12af8108891f4132
BLAKE2b-256 3aad595e7584b7f61d58fc01acc444387071f81586de8aa9d06c3233615eccbb

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc-1.10.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ffaaaac00dc94594b81e222584aa14c5bad8b12162d65149c79aece7136b718a
MD5 f2c3c39c86032591b426a70e8503819f
BLAKE2b-256 e26d6526a6a4d2a50ca0f6abdc980bfa79bded66bce307818c0cd297b2a736ef

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f19eb67edc5deb97efa3c6874ff4fe124e9f884abc0addf6e527db47c3f1be4a
MD5 b26e811794766e4b34d5f8c25ae5bab5
BLAKE2b-256 b3ed4006eacfb90c798ea650321a5872e1838d4f14c82f0704956d63dbdc388d

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.10.0-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e9ef520f6bd91572b61a3301b2395456b70d07b83ac600a0b01ac17448509f44
MD5 645c1283f6db3115ee6b16eae1626504
BLAKE2b-256 fdaf8ce80e97ccedf1129b431458951a7c12abaef2a55b00a1557374a6ffe977

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 27f51dc3e8a36c2bdabfd494733fd241a672893b01ef8e9920a9ea9615cccbfe
MD5 f976a0b79f039285044e546d33742df0
BLAKE2b-256 688d387c3ef8400409dd34777f6584ba57adadc06af6bcb5d65d2176a9143754

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.0-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fe8671068e967a91d3f78bd2bfea618b1772b3cfca90de6536bc12a084ce27e3
MD5 023002d59eeea12587599255ceb42266
BLAKE2b-256 71247c8c7b458ca90ed7916274d2675a5ad87a90cf963473722cd05663bd6ff4

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aaa9ffeb48d5d5b75a4f0a469453bdf37ec99f8a5c6059191fa81a7afdb5897b
MD5 72cd45214a9a76491f7e54479aa04115
BLAKE2b-256 0b1ac2efb64ded13817ab34096002d8fc7f145362bf8159415c7abfd4ff0b0b4

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 86ec4f5e02e9ce14dba6643df32ad953927f2dcec607b8b4b05a5ae6013db4d2
MD5 13dc07283eb369fdbb5fa90ea761ab85
BLAKE2b-256 f4098c5d7d0214206d739c0928b388b9614d035d92f08cc8aa515da7391b76a9

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: blosc-1.10.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 72bf8fef6de408a9f4e19c33c09ef7c985fb89fd6f4fda41e863587d732891e4
MD5 9fba2a8fbdbe2a93c50d881c2ceaa174
BLAKE2b-256 0a6bb33ee6e6eee7b24c7218a2d041bbdec715e82d3d6649a3489ef26210d3e9

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 87e83ef1c8b99335a514197f98a67da73d97d168c97728ad19131324ce13e597
MD5 80669f1d8b801bf4714853ffa9bca9f9
BLAKE2b-256 df5a1e032e7a9f7c9fdf32aed4dfd55c816359e2f4133bc69728b2adc0ee2733

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.10.0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5b614333a48d63dbaf5b7cd08743bcfd3726ae7f4300fa3a018f8de491ee7d35
MD5 22df6b283f5600ac68dd9c25fff722d8
BLAKE2b-256 0059178be8ecd9f27d4ca6acbbdb79e9c3e401acbac19d4278a2f18a1d6f5ebc

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 860b9cc67753a459f816ff1abfca126d4174b1973c65957a919e202d06be540e
MD5 acc14ca49bd2fb3a0315022a8335a4c0
BLAKE2b-256 80bbb428e45172c901878648a47f80157ac2067e9f3812af1c28a1ddbbe30d69

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7a4eefe4631849f00bac8cac28ffae895ac57d2f386ca12311214746f6c10c88
MD5 3dd4e8ada1e516cac1d60be543937a3e
BLAKE2b-256 3cfd4fbda534f637325cce879ee473cf477ea36723be5bbc83030709582543f7

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e04cc3da5a268c6031f63c69f5514ea0467a0ec3e9263e92b7ed8334b8ae9dd7
MD5 0a322d9e9955b4d968806d8945a2f2af
BLAKE2b-256 6dd06e6521b2ded85dbb753a0b75fc705e0fbd56fefc571a6a447083f1fae5b3

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5f2550cf4e34e20e440071827ee7404f7d2d01c8b4a1713a493fdc59f3e391bc
MD5 798b3521de94ea77f6d400fba123a160
BLAKE2b-256 0830c2eb3e777e72ad256460d5981593647627e28f1e789e66e6169e99c784a4

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: blosc-1.10.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 89aef19cdb13ce37302713f770a1ad22edae33d1c84debc74ef46107c4f9f9f1
MD5 d63d1a0419ba3a7297245a7a237282e5
BLAKE2b-256 53bf41d4dba34d318171895233760cdb127f4e424b0f39a7046f23123459b34c

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d97610aade7b4bd74601b153523cd80ad5fd45a1d3299a32d3a0f4e2f5e4e5b5
MD5 b852ce65c84727b5f4d0daa9e4308f9b
BLAKE2b-256 bd1b13cdc0020ddb344150e07c69cfdb0af16328a295a9f67efb298974a2f2d0

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.10.0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d82ebb9ec2edf3b7a0c883f04f482c159171ebfc469a77448aa9dbb687971276
MD5 220505a0f71fdcf8ce223c3de006211e
BLAKE2b-256 24421eddf4591a3af7dfe2fece574fb8b8406617c738f63621b2859a77b0061f

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bbc29bd93aab020d84899f12a68ea703ecb60a204eaf23490e01b4395d8e117b
MD5 ae6806e9e29c43dc09c6b291fd55d52f
BLAKE2b-256 a4e695f1c535356188d10917e5807e6fdd0f109d699dd0459c1123c27e45e3f3

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 24d3f92a3f038f72485808fda96eadd9a4ef8a5706ba823e8318e08fc9914691
MD5 8dc0142ec7c3a18da9d2dec28422458d
BLAKE2b-256 762d8030219808e3681d2aa62e1fec7affff6043dcd577d8cf746bca2fe5fb47

See more details on using hashes here.

File details

Details for the file blosc-1.10.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9a7004bee16d5ac609c5a1c1df008110aee93f0af1422c86525eb6c7c21d0501
MD5 5d306d0281d8abfca9f6b440c23e2fbd
BLAKE2b-256 32b117e9ebb2c6ab05c8d484e070dea53618c0623669ce0a9fce547de6121def

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page