Skip to main content

Blosc data compressor

Project description

python-blosc: a Python wrapper for the extremely fast Blosc compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc

URL:

http://python-blosc.blosc.org

PyPi:

version

Anaconda:

anaconda

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (http://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc a Python package that wraps Blosc. python-blosc supports Python 3.6 or higher versions.

Installing

You can install binary packages with conda:

$ conda install -c conda-forge python-blosc

Or, install it as a typical Python source package (requires c-compiler and Python headers) from PyPi using pip:

$ pip install blosc

Documentation

The Sphinx based documentation is here:

http://python-blosc.blosc.org

Also, some examples are available on python-blosc wiki page:

http://github.com/blosc/python-blosc/wiki

Lastly, here is the recording and the slides from the talk “Compress me stupid” at the EuroPython 2014.

Building

If you need more control, there are different ways to compile python-blosc, depending if you want to link with an already installed Blosc library or not.

Installing via setuptools

python-blosc comes with the Blosc sources with it and can be built with:

$ python -m pip install -r requirements-dev.txt
$ python setup.py build_ext --inplace

Any codec can be enabled (=1) or disabled (=0) on this build-path with the appropriate OS environment variables INCLUDE_LZ4, INCLUDE_SNAPPY, INCLUDE_ZLIB, and INCLUDE_ZLIB. By default all the codecs in Blosc are enabled except Snappy (due to some issues with C++ with the gcc toolchain).

Compiler specific optimisations are automatically enabled by inspecting the CPU flags building Blosc. They can be manually disabled by setting the following environmental variables: DISABLE_BLOSC_SSE2 and DISABLE_BLOSC_AVX2.

setuptools is limited to using the compiler specified in the environment variable CC which on posix systems is usually gcc. This often causes trouble with the Snappy codec, which is written in C++, and as a result Snappy is no longer compiled by default. This problem is not known to affect MSVC or clang. Snappy is considered optional in Blosc as its compression performance is below that of the other codecs.

That’s all. You can proceed with testing section now.

Compiling with an installed Blosc library

This approach uses pre-built, fully optimized versions of Blosc built via CMake.

Go to https://github.com/Blosc/c-blosc/releases and download and install the C-Blosc library. Then, you can tell python-blosc where is the C-Blosc library in a couple of ways:

Using an environment variable:

$ BLOSC_DIR=/usr/local     (or "set BLOSC_DIR=\blosc" on Win)
$ export BLOSC_DIR         (not needed on Win)
$ python setup.py build_clib
$ python setup.py build_ext --inplace

Using a flag:

$ python setup.py build_clib
$ python setup.py build_ext --inplace --blosc=/usr/local

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

$ PYTHONPATH=.   (or "set PYTHONPATH=." on Win)
$ export PYTHONPATH=.  (not needed on Win)
$ python blosc/test.py  (add -v for verbose mode)

Or alternatively, you can use the third-party nosetests script:

$ nosetests --with-doctest (add -v for verbose mode)

Once installed, you can re-run the tests at any time with:

$ python -c "import blosc; blosc.test()"

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

$ PYTHONPATH=. python bench/compress_ptr.py

Just to whet your appetite, here are the results for an Intel Xeon E5-2695 v3 @ 2.30GHz, running Python 3.5, CentOS 7, but YMMV (and will vary!):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.5.1.dev0
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.7
  Zstd: 1.1.2
Python version: 3.5.2 |Continuum Analytics, Inc.| (default, Jul  2 2016, 17:53:06)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
Platform: Linux-3.10.0-327.18.2.el7.x86_64-x86_64 (#1 SMP Thu May 12 11:03:55 UTC 2016)
Linux dist: CentOS Linux 7.2.1511
Processor: x86_64
Byte-ordering: little
Detected cores: 56
Number of threads to use by default: 4
  -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** ctypes.memmove() *** Time for memcpy(): 0.276 s (2.70 GB/s)

Times for compressing/decompressing with clevel=5 and 24 threads

*** the arange linear distribution ***
  *** blosclz , noshuffle  ***  0.382 s (1.95 GB/s) / 0.300 s (2.48 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.042 s (17.77 GB/s) / 0.027 s (27.18 GB/s)   Compr. ratio:  57.1x
  *** blosclz , bitshuffle ***  0.094 s (7.94 GB/s) / 0.041 s (18.28 GB/s)    Compr. ratio:  74.0x
  *** lz4     , noshuffle  ***  0.156 s (4.79 GB/s) / 0.052 s (14.30 GB/s)    Compr. ratio:   2.0x
  *** lz4     , shuffle    ***  0.033 s (22.58 GB/s) / 0.034 s (22.03 GB/s)   Compr. ratio:  68.6x
  *** lz4     , bitshuffle ***  0.059 s (12.63 GB/s) / 0.053 s (14.18 GB/s)   Compr. ratio:  33.1x
  *** lz4hc   , noshuffle  ***  0.443 s (1.68 GB/s) / 0.070 s (10.62 GB/s)    Compr. ratio:   2.0x
  *** lz4hc   , shuffle    ***  0.102 s (7.31 GB/s) / 0.029 s (25.42 GB/s)    Compr. ratio:  97.5x
  *** lz4hc   , bitshuffle ***  0.206 s (3.62 GB/s) / 0.038 s (19.85 GB/s)    Compr. ratio: 180.5x
  *** snappy  , noshuffle  ***  0.154 s (4.84 GB/s) / 0.056 s (13.28 GB/s)    Compr. ratio:   2.0x
  *** snappy  , shuffle    ***  0.044 s (16.89 GB/s) / 0.047 s (15.95 GB/s)   Compr. ratio:  17.4x
  *** snappy  , bitshuffle ***  0.064 s (11.58 GB/s) / 0.061 s (12.26 GB/s)   Compr. ratio:  18.2x
  *** zlib    , noshuffle  ***  1.172 s (0.64 GB/s) / 0.135 s (5.50 GB/s)     Compr. ratio:   5.3x
  *** zlib    , shuffle    ***  0.260 s (2.86 GB/s) / 0.086 s (8.67 GB/s)     Compr. ratio: 120.8x
  *** zlib    , bitshuffle ***  0.262 s (2.84 GB/s) / 0.094 s (7.96 GB/s)     Compr. ratio: 260.1x
  *** zstd    , noshuffle  ***  0.973 s (0.77 GB/s) / 0.093 s (8.00 GB/s)     Compr. ratio:   7.8x
  *** zstd    , shuffle    ***  0.093 s (7.97 GB/s) / 0.023 s (32.71 GB/s)    Compr. ratio: 156.7x
  *** zstd    , bitshuffle ***  0.115 s (6.46 GB/s) / 0.029 s (25.60 GB/s)    Compr. ratio: 320.6x

*** the linspace linear distribution ***
  *** blosclz , noshuffle  ***  0.341 s (2.19 GB/s) / 0.291 s (2.56 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.132 s (5.65 GB/s) / 0.023 s (33.10 GB/s)    Compr. ratio:   2.0x
  *** blosclz , bitshuffle ***  0.166 s (4.50 GB/s) / 0.036 s (20.89 GB/s)    Compr. ratio:   2.8x
  *** lz4     , noshuffle  ***  0.142 s (5.26 GB/s) / 0.028 s (27.07 GB/s)    Compr. ratio:   1.0x
  *** lz4     , shuffle    ***  0.093 s (8.01 GB/s) / 0.030 s (24.87 GB/s)    Compr. ratio:   3.4x
  *** lz4     , bitshuffle ***  0.102 s (7.31 GB/s) / 0.039 s (19.13 GB/s)    Compr. ratio:   5.3x
  *** lz4hc   , noshuffle  ***  0.700 s (1.06 GB/s) / 0.044 s (16.77 GB/s)    Compr. ratio:   1.1x
  *** lz4hc   , shuffle    ***  0.203 s (3.67 GB/s) / 0.021 s (36.22 GB/s)    Compr. ratio:   8.6x
  *** lz4hc   , bitshuffle ***  0.342 s (2.18 GB/s) / 0.028 s (26.50 GB/s)    Compr. ratio:  14.2x
  *** snappy  , noshuffle  ***  0.271 s (2.75 GB/s) / 0.274 s (2.72 GB/s)     Compr. ratio:   1.0x
  *** snappy  , shuffle    ***  0.099 s (7.54 GB/s) / 0.042 s (17.55 GB/s)    Compr. ratio:   4.2x
  *** snappy  , bitshuffle ***  0.127 s (5.86 GB/s) / 0.043 s (17.20 GB/s)    Compr. ratio:   6.1x
  *** zlib    , noshuffle  ***  1.525 s (0.49 GB/s) / 0.158 s (4.70 GB/s)     Compr. ratio:   1.6x
  *** zlib    , shuffle    ***  0.346 s (2.15 GB/s) / 0.098 s (7.59 GB/s)     Compr. ratio:  10.7x
  *** zlib    , bitshuffle ***  0.420 s (1.78 GB/s) / 0.104 s (7.20 GB/s)     Compr. ratio:  18.0x
  *** zstd    , noshuffle  ***  1.061 s (0.70 GB/s) / 0.096 s (7.79 GB/s)     Compr. ratio:   1.9x
  *** zstd    , shuffle    ***  0.203 s (3.68 GB/s) / 0.052 s (14.21 GB/s)    Compr. ratio:  14.2x
  *** zstd    , bitshuffle ***  0.251 s (2.97 GB/s) / 0.047 s (15.84 GB/s)    Compr. ratio:  22.2x

*** the random distribution ***
  *** blosclz , noshuffle  ***  0.340 s (2.19 GB/s) / 0.285 s (2.61 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.091 s (8.21 GB/s) / 0.017 s (44.29 GB/s)    Compr. ratio:   3.9x
  *** blosclz , bitshuffle ***  0.080 s (9.27 GB/s) / 0.029 s (26.12 GB/s)    Compr. ratio:   6.1x
  *** lz4     , noshuffle  ***  0.150 s (4.95 GB/s) / 0.027 s (28.05 GB/s)    Compr. ratio:   2.4x
  *** lz4     , shuffle    ***  0.068 s (11.02 GB/s) / 0.029 s (26.03 GB/s)   Compr. ratio:   4.5x
  *** lz4     , bitshuffle ***  0.063 s (11.87 GB/s) / 0.054 s (13.70 GB/s)   Compr. ratio:   6.2x
  *** lz4hc   , noshuffle  ***  0.645 s (1.15 GB/s) / 0.019 s (39.22 GB/s)    Compr. ratio:   3.5x
  *** lz4hc   , shuffle    ***  0.257 s (2.90 GB/s) / 0.022 s (34.62 GB/s)    Compr. ratio:   5.1x
  *** lz4hc   , bitshuffle ***  0.128 s (5.80 GB/s) / 0.029 s (25.52 GB/s)    Compr. ratio:   6.2x
  *** snappy  , noshuffle  ***  0.164 s (4.54 GB/s) / 0.048 s (15.46 GB/s)    Compr. ratio:   2.2x
  *** snappy  , shuffle    ***  0.082 s (9.09 GB/s) / 0.043 s (17.39 GB/s)    Compr. ratio:   4.3x
  *** snappy  , bitshuffle ***  0.071 s (10.48 GB/s) / 0.046 s (16.08 GB/s)   Compr. ratio:   5.0x
  *** zlib    , noshuffle  ***  1.223 s (0.61 GB/s) / 0.093 s (7.97 GB/s)     Compr. ratio:   4.0x
  *** zlib    , shuffle    ***  0.636 s (1.17 GB/s) / 0.126 s (5.89 GB/s)     Compr. ratio:   5.5x
  *** zlib    , bitshuffle ***  0.327 s (2.28 GB/s) / 0.109 s (6.81 GB/s)     Compr. ratio:   6.2x
  *** zstd    , noshuffle  ***  1.432 s (0.52 GB/s) / 0.103 s (7.27 GB/s)     Compr. ratio:   4.2x
  *** zstd    , shuffle    ***  0.388 s (1.92 GB/s) / 0.031 s (23.71 GB/s)    Compr. ratio:   5.9x
  *** zstd    , bitshuffle ***  0.127 s (5.86 GB/s) / 0.033 s (22.77 GB/s)    Compr. ratio:   6.4x

Also, Blosc works quite well on ARM processors (even without NEON support yet):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.4.4
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.8
  Zstd: 1.1.2
Python version: 3.6.0 (default, Dec 31 2016, 21:20:16)
[GCC 4.9.2]
Platform: Linux-3.4.113-sun8i-armv7l (#50 SMP PREEMPT Mon Nov 14 08:41:55 CET 2016)
Linux dist: debian 9.0
Processor: not recognized
Byte-ordering: little
Detected cores: 4
Number of threads to use by default: 4
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
  *** ctypes.memmove() *** Time for memcpy():   0.015 s (93.57 MB/s)

Times for compressing/decompressing with clevel=5 and 4 threads

*** user input ***
  *** blosclz , noshuffle  ***  0.015 s (89.93 MB/s) / 0.010 s (138.32 MB/s)    Compr. ratio:   2.7x
  *** blosclz , shuffle    ***  0.023 s (60.25 MB/s) / 0.012 s (112.71 MB/s)    Compr. ratio:   2.3x
  *** blosclz , bitshuffle ***  0.018 s (77.63 MB/s) / 0.021 s (66.76 MB/s)     Compr. ratio:   7.3x
  *** lz4     , noshuffle  ***  0.008 s (177.14 MB/s) / 0.009 s (159.00 MB/s)   Compr. ratio:   3.6x
  *** lz4     , shuffle    ***  0.010 s (131.29 MB/s) / 0.012 s (117.69 MB/s)   Compr. ratio:   3.5x
  *** lz4     , bitshuffle ***  0.015 s (89.97 MB/s) / 0.022 s (63.62 MB/s)     Compr. ratio:   8.4x
  *** lz4hc   , noshuffle  ***  0.071 s (19.30 MB/s) / 0.007 s (186.64 MB/s)    Compr. ratio:   8.6x
  *** lz4hc   , shuffle    ***  0.079 s (17.30 MB/s) / 0.014 s (95.99 MB/s)     Compr. ratio:   6.2x
  *** lz4hc   , bitshuffle ***  0.062 s (22.23 MB/s) / 0.027 s (51.53 MB/s)     Compr. ratio:   9.7x
  *** snappy  , noshuffle  ***  0.008 s (173.87 MB/s) / 0.009 s (148.77 MB/s)   Compr. ratio:   4.4x
  *** snappy  , shuffle    ***  0.011 s (123.22 MB/s) / 0.016 s (85.16 MB/s)    Compr. ratio:   4.4x
  *** snappy  , bitshuffle ***  0.015 s (89.02 MB/s) / 0.021 s (64.87 MB/s)     Compr. ratio:   6.2x
  *** zlib    , noshuffle  ***  0.047 s (29.26 MB/s) / 0.011 s (121.83 MB/s)    Compr. ratio:  14.7x
  *** zlib    , shuffle    ***  0.080 s (17.20 MB/s) / 0.022 s (63.61 MB/s)     Compr. ratio:   9.4x
  *** zlib    , bitshuffle ***  0.059 s (23.50 MB/s) / 0.033 s (41.10 MB/s)     Compr. ratio:  10.5x
  *** zstd    , noshuffle  ***  0.113 s (12.21 MB/s) / 0.011 s (124.64 MB/s)    Compr. ratio:  15.6x
  *** zstd    , shuffle    ***  0.154 s (8.92 MB/s) / 0.026 s (52.56 MB/s)      Compr. ratio:   9.9x
  *** zstd    , bitshuffle ***  0.116 s (11.86 MB/s) / 0.036 s (38.40 MB/s)     Compr. ratio:  11.4x

For details on the ARM benchmark see: https://github.com/Blosc/python-blosc/issues/105

In case you find your own results interesting, please report them back to the authors!

License

The software is licenses under a 3-Clause BSD licsense. A copy of the python-blosc license can be found in LICENSE.txt. A copy of all licenses can be found in LICENSES/.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

http://groups.google.es/group/blosc


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc-1.10.0rc0.tar.gz (845.4 kB view details)

Uploaded Source

Built Distributions

blosc-1.10.0rc0-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc-1.10.0rc0-cp39-cp39-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

blosc-1.10.0rc0-cp39-cp39-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

blosc-1.10.0rc0-cp39-cp39-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

blosc-1.10.0rc0-cp39-cp39-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9

blosc-1.10.0rc0-cp39-cp39-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.9

blosc-1.10.0rc0-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc-1.10.0rc0-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc-1.10.0rc0-cp38-cp38-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

blosc-1.10.0rc0-cp38-cp38-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

blosc-1.10.0rc0-cp38-cp38-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

blosc-1.10.0rc0-cp38-cp38-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8

blosc-1.10.0rc0-cp38-cp38-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.8

blosc-1.10.0rc0-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

blosc-1.10.0rc0-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

blosc-1.10.0rc0-cp37-cp37m-win32.whl (1.3 MB view details)

Uploaded CPython 3.7m Windows x86

blosc-1.10.0rc0-cp37-cp37m-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

blosc-1.10.0rc0-cp37-cp37m-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

blosc-1.10.0rc0-cp37-cp37m-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m

blosc-1.10.0rc0-cp37-cp37m-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m

blosc-1.10.0rc0-cp37-cp37m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file blosc-1.10.0rc0.tar.gz.

File metadata

  • Download URL: blosc-1.10.0rc0.tar.gz
  • Upload date:
  • Size: 845.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0.tar.gz
Algorithm Hash digest
SHA256 2edc170e618e847afc2e70948e254c3a3eca7d16c92f45daa94472030d8f6041
MD5 e5f29b0853fa40e800badc14d284ea7a
BLAKE2b-256 c09d4102eee2d35b60d9823904cedb221aa42e3dc03dfd3cb1c3fe438b3c8589

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ab5b06e3f954e288ccd3c524b9b3cf031c3342db88f17beadec55033911276c4
MD5 265c0ce29be6b18de66afd60120205ec
BLAKE2b-256 f977fd4e45730e14a0c8a10d47518f83e225e2fce5edfa7bd49327be8654b9cd

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9bf67cd84b0ab8bbd3d408200308ae1edaec3c5f22d13c28eba95a657f38d047
MD5 0e58a7aace0f8a01da3640ef6b87a863
BLAKE2b-256 fb7119030045e8b9cdaef41ee0621e99f22163e5708e684144df97b184df8ff0

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3398dac6aa1edc1bf2135283fe7e63faa2a4062f3041d0eaf3e457134b79b345
MD5 7b666629bceaf3402621e38df1a1a207
BLAKE2b-256 46b56f83efb0032b866cc34591acae724c1a3788651eeef4fbb305e2f6959580

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c8b512b8e64026010b7ec3813946418182ba2be11bc16654c8210fca01a1823e
MD5 036ca6d0cc9da12cd1e545b86d30fa40
BLAKE2b-256 a5c7729c7ced35dc063f76fc00eace45327d149443acdd51ba51a9fc1bb01908

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e77c764b45617a1228b4ce2b7e6dce3ccbcfa777d378479ed09ba4bb1765f37c
MD5 63ddae7e137894e6310427c90666d1a1
BLAKE2b-256 d01a32f23348bcafce81d197ee7e9e160ce03e4a7d3a9570cf0b1102b277c510

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4de4139c548997010e6b03f3f66a337ffa06cfc04430161683028999cbbed864
MD5 b0d6cabd92c07b213a36c7c6072dbd8e
BLAKE2b-256 3ab0e2de16a8e202df789d79c8bad588c9e3160a9c079361c82de266c045537e

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 faeb502a4c360fb51178e36cb192e1ac579ad9977781d692e974b4f1721bcb89
MD5 53326c5c415231745e4477f084544bd6
BLAKE2b-256 bf82c4ffe204530566f9b364130f3cbaf89bd34f47267429ba61e7ffb9af3f66

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f3dd2f936f96302c54a3c6ca56788f8570d0847c7d5042f5f981f0f9cc635047
MD5 72a506426027a685d4029200d9b135fa
BLAKE2b-256 7936a85ddb90cee93183d319afd56b3a8728455c5f3871c2dcbbcac5e27fd6b4

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp38-cp38-win32.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 e0b38629ed21a4b3548bf241e0c17bf7d1e87beb7cf56243ffdde771ac5248d4
MD5 27b5e688ec832145170b53e70cd5bf3c
BLAKE2b-256 b37f326a908d7377ed7389a5bc7b58ce657fa3c3e26e4f0a766c8539539c3216

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cf20fcb4bf897d9ee2d42346a4775ceeb4f54a697cdc6b7d7f4cd1d9e2367bf7
MD5 27ae2a36b15afeaf1bcb114f21b4d2df
BLAKE2b-256 c7a940ad9d9021497a68a42870c17f54895e2c2b6e8d6c70e0cc6bb9e27512d7

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2bb6853eb544978b93ed4de0a82cb4f273a63f8ef3c8a7a4ec72ce962b218a23
MD5 abf704021abe20c24e04dac1d534c6f5
BLAKE2b-256 45dbcebe76f49f1ac4b34807ba150a57cc867356ef23c6f4dccadd6eb3539c24

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 480885f98a0f5cd4d2a69a4284f90de21b2941a9b89db4250d3ce5b5305a607a
MD5 4bb004a4a48fcff6baf85e5a75b00ff7
BLAKE2b-256 ceb020ad8ab61f3c2c9ba85aa913d98ee92cc5f8d90e41f7f863cbdaa9429f79

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 561b62a8360c7e366a426631c66aea6fcd974690618ce05db2aa8b73b97ab4b5
MD5 fc5f4587f1be9c81d203f9aa8ca9d61b
BLAKE2b-256 9312e8c6f0029f0a3ab00b9261d2261fcf9e6b197138b07cd05c67b400fad4e7

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4a147b6cb8c5fdad9be4159fd780cdb27cff3bcb5944643ca6a47a7277b8fa49
MD5 aaa934e7c328030f7e721250102319e0
BLAKE2b-256 d91eb2cade3a362355b4c50ad020d043d36535ac85570950f2d1b7f6d38abc64

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 180c7eae685f5d306375878bdd1479d2b7a61d43b7c3a8d62e02a8f2001d11ec
MD5 c24cdba9682214089384691b47b440fd
BLAKE2b-256 cfdb2698a8ed0484de012f15b423cb518dfc21b6406951e96a340a82ed20546d

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3f73c12d3ed34b0fdf2715fdf3e64647922e0a93fd21149e3a9714f10214659c
MD5 1215e259adfce8f74d9e1df6600b7be8
BLAKE2b-256 36c5a0e23bdf16816841a9fc7f11d7e7a018b905d96b561558e5719dbfbeced6

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a0d4eb4e37028251edbaa1a533a10538450ddc2c65cef437717244e451facc14
MD5 5679c7bced662abec0256f12a1893d7f
BLAKE2b-256 1eac05e1975a28ad71e7c6f8a1704d1bdebef6287f76720f811074e69c831788

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1fe8f6505cfa008f531c7cd5275a4d423f757a435c8f03c3e09e332ecb461035
MD5 a09aec92abc2667651d07b01c3a059e0
BLAKE2b-256 6b2d110c6659b94130cd231dc02c1e43aea9daf11983b6db30db10f696523d43

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b0d883aac45ce4b391f19b6eb2eea89b9af723d0eeed3f1f5828e566e289beab
MD5 f90f50ee9ce89ea9c854871fa2c17240
BLAKE2b-256 819c3b1bcbefa56607be04872cf2fb6a3dd9c036fc4f35a365e4e054f2bdf1ab

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5627c6a1a7e1d2debe39da7b2c967265d7cb7ad4efb38930b98829564013f0c2
MD5 c6d67f46ff3441cbd75e6dc10c434f20
BLAKE2b-256 f1b17f9605d93ef532d6594bea0a083f59128ae2b2c704a91d9fafbc3d10bd43

See more details on using hashes here.

File details

Details for the file blosc-1.10.0rc0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.0rc0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.0rc0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 563713509ceb414196e6945dfe8629e0566c3679549f61afd9205148b38edff7
MD5 4d70366b2e29aa2c9f791e171517318b
BLAKE2b-256 749a06bfbc826652e98f7435b1b0321d4200d69537af7bcac8268308edf87a25

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page