Skip to main content

Blosc data compressor

Project description

python-blosc: a Python wrapper for the extremely fast Blosc compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc

URL:

http://python-blosc.blosc.org

PyPi:

version

Anaconda:

anaconda

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (http://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc a Python package that wraps Blosc. python-blosc supports Python 3.6 or higher versions.

Installing

You can install binary packages with conda:

$ conda install -c conda-forge python-blosc

Or, install it as a typical Python source package (requires c-compiler and Python headers) from PyPi using pip:

$ pip install blosc

Documentation

The Sphinx based documentation is here:

http://python-blosc.blosc.org

Also, some examples are available on python-blosc wiki page:

http://github.com/blosc/python-blosc/wiki

Lastly, here is the recording and the slides from the talk “Compress me stupid” at the EuroPython 2014.

Building

If you need more control, there are different ways to compile python-blosc, depending if you want to link with an already installed Blosc library or not.

Installing via setuptools

python-blosc comes with the Blosc sources with it and can be built with:

$ python -m pip install -r requirements-dev.txt
$ python setup.py build_ext --inplace

Any codec can be enabled (=1) or disabled (=0) on this build-path with the appropriate OS environment variables INCLUDE_LZ4, INCLUDE_SNAPPY, INCLUDE_ZLIB, and INCLUDE_ZLIB. By default all the codecs in Blosc are enabled except Snappy (due to some issues with C++ with the gcc toolchain).

Compiler specific optimisations are automatically enabled by inspecting the CPU flags building Blosc. They can be manually disabled by setting the following environmental variables: DISABLE_BLOSC_SSE2 and DISABLE_BLOSC_AVX2.

setuptools is limited to using the compiler specified in the environment variable CC which on posix systems is usually gcc. This often causes trouble with the Snappy codec, which is written in C++, and as a result Snappy is no longer compiled by default. This problem is not known to affect MSVC or clang. Snappy is considered optional in Blosc as its compression performance is below that of the other codecs.

That’s all. You can proceed with testing section now.

Compiling with an installed Blosc library

This approach uses pre-built, fully optimized versions of Blosc built via CMake.

Go to https://github.com/Blosc/c-blosc/releases and download and install the C-Blosc library. Then, you can tell python-blosc where is the C-Blosc library in a couple of ways:

Using an environment variable:

$ BLOSC_DIR=/usr/local     (or "set BLOSC_DIR=\blosc" on Win)
$ export BLOSC_DIR         (not needed on Win)
$ python setup.py build_clib
$ python setup.py build_ext --inplace

Using a flag:

$ python setup.py build_clib
$ python setup.py build_ext --inplace --blosc=/usr/local

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

$ PYTHONPATH=.   (or "set PYTHONPATH=." on Win)
$ export PYTHONPATH=.  (not needed on Win)
$ python blosc/test.py  (add -v for verbose mode)

Or alternatively, you can use the third-party nosetests script:

$ nosetests --with-doctest (add -v for verbose mode)

Once installed, you can re-run the tests at any time with:

$ python -c "import blosc; blosc.test()"

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

$ PYTHONPATH=. python bench/compress_ptr.py

Just to whet your appetite, here are the results for an Intel Xeon E5-2695 v3 @ 2.30GHz, running Python 3.5, CentOS 7, but YMMV (and will vary!):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.5.1.dev0
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.7
  Zstd: 1.1.2
Python version: 3.5.2 |Continuum Analytics, Inc.| (default, Jul  2 2016, 17:53:06)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
Platform: Linux-3.10.0-327.18.2.el7.x86_64-x86_64 (#1 SMP Thu May 12 11:03:55 UTC 2016)
Linux dist: CentOS Linux 7.2.1511
Processor: x86_64
Byte-ordering: little
Detected cores: 56
Number of threads to use by default: 4
  -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** ctypes.memmove() *** Time for memcpy(): 0.276 s (2.70 GB/s)

Times for compressing/decompressing with clevel=5 and 24 threads

*** the arange linear distribution ***
  *** blosclz , noshuffle  ***  0.382 s (1.95 GB/s) / 0.300 s (2.48 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.042 s (17.77 GB/s) / 0.027 s (27.18 GB/s)   Compr. ratio:  57.1x
  *** blosclz , bitshuffle ***  0.094 s (7.94 GB/s) / 0.041 s (18.28 GB/s)    Compr. ratio:  74.0x
  *** lz4     , noshuffle  ***  0.156 s (4.79 GB/s) / 0.052 s (14.30 GB/s)    Compr. ratio:   2.0x
  *** lz4     , shuffle    ***  0.033 s (22.58 GB/s) / 0.034 s (22.03 GB/s)   Compr. ratio:  68.6x
  *** lz4     , bitshuffle ***  0.059 s (12.63 GB/s) / 0.053 s (14.18 GB/s)   Compr. ratio:  33.1x
  *** lz4hc   , noshuffle  ***  0.443 s (1.68 GB/s) / 0.070 s (10.62 GB/s)    Compr. ratio:   2.0x
  *** lz4hc   , shuffle    ***  0.102 s (7.31 GB/s) / 0.029 s (25.42 GB/s)    Compr. ratio:  97.5x
  *** lz4hc   , bitshuffle ***  0.206 s (3.62 GB/s) / 0.038 s (19.85 GB/s)    Compr. ratio: 180.5x
  *** snappy  , noshuffle  ***  0.154 s (4.84 GB/s) / 0.056 s (13.28 GB/s)    Compr. ratio:   2.0x
  *** snappy  , shuffle    ***  0.044 s (16.89 GB/s) / 0.047 s (15.95 GB/s)   Compr. ratio:  17.4x
  *** snappy  , bitshuffle ***  0.064 s (11.58 GB/s) / 0.061 s (12.26 GB/s)   Compr. ratio:  18.2x
  *** zlib    , noshuffle  ***  1.172 s (0.64 GB/s) / 0.135 s (5.50 GB/s)     Compr. ratio:   5.3x
  *** zlib    , shuffle    ***  0.260 s (2.86 GB/s) / 0.086 s (8.67 GB/s)     Compr. ratio: 120.8x
  *** zlib    , bitshuffle ***  0.262 s (2.84 GB/s) / 0.094 s (7.96 GB/s)     Compr. ratio: 260.1x
  *** zstd    , noshuffle  ***  0.973 s (0.77 GB/s) / 0.093 s (8.00 GB/s)     Compr. ratio:   7.8x
  *** zstd    , shuffle    ***  0.093 s (7.97 GB/s) / 0.023 s (32.71 GB/s)    Compr. ratio: 156.7x
  *** zstd    , bitshuffle ***  0.115 s (6.46 GB/s) / 0.029 s (25.60 GB/s)    Compr. ratio: 320.6x

*** the linspace linear distribution ***
  *** blosclz , noshuffle  ***  0.341 s (2.19 GB/s) / 0.291 s (2.56 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.132 s (5.65 GB/s) / 0.023 s (33.10 GB/s)    Compr. ratio:   2.0x
  *** blosclz , bitshuffle ***  0.166 s (4.50 GB/s) / 0.036 s (20.89 GB/s)    Compr. ratio:   2.8x
  *** lz4     , noshuffle  ***  0.142 s (5.26 GB/s) / 0.028 s (27.07 GB/s)    Compr. ratio:   1.0x
  *** lz4     , shuffle    ***  0.093 s (8.01 GB/s) / 0.030 s (24.87 GB/s)    Compr. ratio:   3.4x
  *** lz4     , bitshuffle ***  0.102 s (7.31 GB/s) / 0.039 s (19.13 GB/s)    Compr. ratio:   5.3x
  *** lz4hc   , noshuffle  ***  0.700 s (1.06 GB/s) / 0.044 s (16.77 GB/s)    Compr. ratio:   1.1x
  *** lz4hc   , shuffle    ***  0.203 s (3.67 GB/s) / 0.021 s (36.22 GB/s)    Compr. ratio:   8.6x
  *** lz4hc   , bitshuffle ***  0.342 s (2.18 GB/s) / 0.028 s (26.50 GB/s)    Compr. ratio:  14.2x
  *** snappy  , noshuffle  ***  0.271 s (2.75 GB/s) / 0.274 s (2.72 GB/s)     Compr. ratio:   1.0x
  *** snappy  , shuffle    ***  0.099 s (7.54 GB/s) / 0.042 s (17.55 GB/s)    Compr. ratio:   4.2x
  *** snappy  , bitshuffle ***  0.127 s (5.86 GB/s) / 0.043 s (17.20 GB/s)    Compr. ratio:   6.1x
  *** zlib    , noshuffle  ***  1.525 s (0.49 GB/s) / 0.158 s (4.70 GB/s)     Compr. ratio:   1.6x
  *** zlib    , shuffle    ***  0.346 s (2.15 GB/s) / 0.098 s (7.59 GB/s)     Compr. ratio:  10.7x
  *** zlib    , bitshuffle ***  0.420 s (1.78 GB/s) / 0.104 s (7.20 GB/s)     Compr. ratio:  18.0x
  *** zstd    , noshuffle  ***  1.061 s (0.70 GB/s) / 0.096 s (7.79 GB/s)     Compr. ratio:   1.9x
  *** zstd    , shuffle    ***  0.203 s (3.68 GB/s) / 0.052 s (14.21 GB/s)    Compr. ratio:  14.2x
  *** zstd    , bitshuffle ***  0.251 s (2.97 GB/s) / 0.047 s (15.84 GB/s)    Compr. ratio:  22.2x

*** the random distribution ***
  *** blosclz , noshuffle  ***  0.340 s (2.19 GB/s) / 0.285 s (2.61 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.091 s (8.21 GB/s) / 0.017 s (44.29 GB/s)    Compr. ratio:   3.9x
  *** blosclz , bitshuffle ***  0.080 s (9.27 GB/s) / 0.029 s (26.12 GB/s)    Compr. ratio:   6.1x
  *** lz4     , noshuffle  ***  0.150 s (4.95 GB/s) / 0.027 s (28.05 GB/s)    Compr. ratio:   2.4x
  *** lz4     , shuffle    ***  0.068 s (11.02 GB/s) / 0.029 s (26.03 GB/s)   Compr. ratio:   4.5x
  *** lz4     , bitshuffle ***  0.063 s (11.87 GB/s) / 0.054 s (13.70 GB/s)   Compr. ratio:   6.2x
  *** lz4hc   , noshuffle  ***  0.645 s (1.15 GB/s) / 0.019 s (39.22 GB/s)    Compr. ratio:   3.5x
  *** lz4hc   , shuffle    ***  0.257 s (2.90 GB/s) / 0.022 s (34.62 GB/s)    Compr. ratio:   5.1x
  *** lz4hc   , bitshuffle ***  0.128 s (5.80 GB/s) / 0.029 s (25.52 GB/s)    Compr. ratio:   6.2x
  *** snappy  , noshuffle  ***  0.164 s (4.54 GB/s) / 0.048 s (15.46 GB/s)    Compr. ratio:   2.2x
  *** snappy  , shuffle    ***  0.082 s (9.09 GB/s) / 0.043 s (17.39 GB/s)    Compr. ratio:   4.3x
  *** snappy  , bitshuffle ***  0.071 s (10.48 GB/s) / 0.046 s (16.08 GB/s)   Compr. ratio:   5.0x
  *** zlib    , noshuffle  ***  1.223 s (0.61 GB/s) / 0.093 s (7.97 GB/s)     Compr. ratio:   4.0x
  *** zlib    , shuffle    ***  0.636 s (1.17 GB/s) / 0.126 s (5.89 GB/s)     Compr. ratio:   5.5x
  *** zlib    , bitshuffle ***  0.327 s (2.28 GB/s) / 0.109 s (6.81 GB/s)     Compr. ratio:   6.2x
  *** zstd    , noshuffle  ***  1.432 s (0.52 GB/s) / 0.103 s (7.27 GB/s)     Compr. ratio:   4.2x
  *** zstd    , shuffle    ***  0.388 s (1.92 GB/s) / 0.031 s (23.71 GB/s)    Compr. ratio:   5.9x
  *** zstd    , bitshuffle ***  0.127 s (5.86 GB/s) / 0.033 s (22.77 GB/s)    Compr. ratio:   6.4x

Also, Blosc works quite well on ARM processors (even without NEON support yet):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.4.4
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.8
  Zstd: 1.1.2
Python version: 3.6.0 (default, Dec 31 2016, 21:20:16)
[GCC 4.9.2]
Platform: Linux-3.4.113-sun8i-armv7l (#50 SMP PREEMPT Mon Nov 14 08:41:55 CET 2016)
Linux dist: debian 9.0
Processor: not recognized
Byte-ordering: little
Detected cores: 4
Number of threads to use by default: 4
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
  *** ctypes.memmove() *** Time for memcpy():   0.015 s (93.57 MB/s)

Times for compressing/decompressing with clevel=5 and 4 threads

*** user input ***
  *** blosclz , noshuffle  ***  0.015 s (89.93 MB/s) / 0.010 s (138.32 MB/s)    Compr. ratio:   2.7x
  *** blosclz , shuffle    ***  0.023 s (60.25 MB/s) / 0.012 s (112.71 MB/s)    Compr. ratio:   2.3x
  *** blosclz , bitshuffle ***  0.018 s (77.63 MB/s) / 0.021 s (66.76 MB/s)     Compr. ratio:   7.3x
  *** lz4     , noshuffle  ***  0.008 s (177.14 MB/s) / 0.009 s (159.00 MB/s)   Compr. ratio:   3.6x
  *** lz4     , shuffle    ***  0.010 s (131.29 MB/s) / 0.012 s (117.69 MB/s)   Compr. ratio:   3.5x
  *** lz4     , bitshuffle ***  0.015 s (89.97 MB/s) / 0.022 s (63.62 MB/s)     Compr. ratio:   8.4x
  *** lz4hc   , noshuffle  ***  0.071 s (19.30 MB/s) / 0.007 s (186.64 MB/s)    Compr. ratio:   8.6x
  *** lz4hc   , shuffle    ***  0.079 s (17.30 MB/s) / 0.014 s (95.99 MB/s)     Compr. ratio:   6.2x
  *** lz4hc   , bitshuffle ***  0.062 s (22.23 MB/s) / 0.027 s (51.53 MB/s)     Compr. ratio:   9.7x
  *** snappy  , noshuffle  ***  0.008 s (173.87 MB/s) / 0.009 s (148.77 MB/s)   Compr. ratio:   4.4x
  *** snappy  , shuffle    ***  0.011 s (123.22 MB/s) / 0.016 s (85.16 MB/s)    Compr. ratio:   4.4x
  *** snappy  , bitshuffle ***  0.015 s (89.02 MB/s) / 0.021 s (64.87 MB/s)     Compr. ratio:   6.2x
  *** zlib    , noshuffle  ***  0.047 s (29.26 MB/s) / 0.011 s (121.83 MB/s)    Compr. ratio:  14.7x
  *** zlib    , shuffle    ***  0.080 s (17.20 MB/s) / 0.022 s (63.61 MB/s)     Compr. ratio:   9.4x
  *** zlib    , bitshuffle ***  0.059 s (23.50 MB/s) / 0.033 s (41.10 MB/s)     Compr. ratio:  10.5x
  *** zstd    , noshuffle  ***  0.113 s (12.21 MB/s) / 0.011 s (124.64 MB/s)    Compr. ratio:  15.6x
  *** zstd    , shuffle    ***  0.154 s (8.92 MB/s) / 0.026 s (52.56 MB/s)      Compr. ratio:   9.9x
  *** zstd    , bitshuffle ***  0.116 s (11.86 MB/s) / 0.036 s (38.40 MB/s)     Compr. ratio:  11.4x

For details on the ARM benchmark see: https://github.com/Blosc/python-blosc/issues/105

In case you find your own results interesting, please report them back to the authors!

License

The software is licenses under a 3-Clause BSD licsense. A copy of the python-blosc license can be found in LICENSE.txt. A copy of all licenses can be found in LICENSES/.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

http://groups.google.es/group/blosc


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc-1.10.1.tar.gz (858.2 kB view details)

Uploaded Source

Built Distributions

blosc-1.10.1-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc-1.10.1-cp39-cp39-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

blosc-1.10.1-cp39-cp39-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

blosc-1.10.1-cp39-cp39-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

blosc-1.10.1-cp39-cp39-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9

blosc-1.10.1-cp39-cp39-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.9

blosc-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc-1.10.1-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc-1.10.1-cp38-cp38-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

blosc-1.10.1-cp38-cp38-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

blosc-1.10.1-cp38-cp38-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

blosc-1.10.1-cp38-cp38-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8

blosc-1.10.1-cp38-cp38-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.8

blosc-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

blosc-1.10.1-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

blosc-1.10.1-cp37-cp37m-win32.whl (1.3 MB view details)

Uploaded CPython 3.7m Windows x86

blosc-1.10.1-cp37-cp37m-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

blosc-1.10.1-cp37-cp37m-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

blosc-1.10.1-cp37-cp37m-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m

blosc-1.10.1-cp37-cp37m-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m

blosc-1.10.1-cp37-cp37m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file blosc-1.10.1.tar.gz.

File metadata

  • Download URL: blosc-1.10.1.tar.gz
  • Upload date:
  • Size: 858.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.tar.gz
Algorithm Hash digest
SHA256 4494ecae930de3c77ee7bca10f57df89fa6380260f4c436aad26a64c7d7b0916
MD5 4664f8c9c2c66f75394c001a620bc12f
BLAKE2b-256 e9a5c0e2eb6714060e74cea78d60d5bbd5afbc09778771a6fabdeefb55a6ffe0

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 697386d97f2cac9d9f91e0f6fcc3dd78a95febd0396de75978a9ab3f4ec78d2e
MD5 1cc2b28803365b0d64b0d3269b9bcb9a
BLAKE2b-256 e823de0d719fd7215a5055720ea27a905f961c95b54917ed3106729aee971c93

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc-1.10.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 813eed3f5b7f719fa1970f36bed643c8504d0c20e3755b16e8b7991065a93412
MD5 866fcf5461004759174b1b8efeee5c3a
BLAKE2b-256 bb58992b1ebb41eb65b4c1f6730b7fe80e76e62b298f3cb8ab1214ef99eb859d

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.1-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f53d98c84d8a767a970366d8a1ef091c97ba682c2b73470c2ca36de2c7e133d0
MD5 fe3efb1e51446f5592c523d0a0061014
BLAKE2b-256 92fca4b0aab87bbee27550069e5d699642a3808625902abeb63bf4f3c0883bb8

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.10.1-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e453d3b3285e13fc621d8fbdf4dc33fecb3036a05ab79c89674c0ba902b66458
MD5 2a896d0cb11ec802111d4a10795d3d2e
BLAKE2b-256 877a0549014c668fca4f919946d21b961db7a1ea4adaf28e4f0165af565630d6

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.1-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9c759ab9ddcc9f230351b958413b6511de47d10f5d9b18fcfa97652a3e8b6966
MD5 41ac2772a030dfc5563e16b1c2f230fe
BLAKE2b-256 a83a5202241339a0cbb7a3b7156738f1d0812db184d89876d714e6102cf97bb8

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.1-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 74de7ebacae498bfc5be2966271265f05de26e19f00cb8532a311ce72f83652b
MD5 658231ebbf20a608e75ba8c7494f7dd1
BLAKE2b-256 e7523acf7b7aa1fc8590e46c09ab3f4f08ad717d522413b4068deaa17a3164a9

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c0aa3509aa80d365fa4fbb566eee2ebb2e7b06f045c9135e7e0288ffcaab4952
MD5 9cf9b7ed176a39b7de84ca2746fa21b2
BLAKE2b-256 1a404650c1ec946ac617feda0e87b98b91149ceab7d680410b1930da8d41cb8d

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b8e7c8b66033e7a2b5aa5f0f9aaf40d0af71916df06bf9c5705bf223fcda9246
MD5 7117cd8f8061ed5f9079692cb0fc8433
BLAKE2b-256 3860d50f385c38fcdf107865f745901c8921c616209c8e394cb0f26649612aec

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: blosc-1.10.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b734e7974c016d528f74fcf748e2376136f2eeb21a1f74b183239cf284657dfa
MD5 6d7aae651f59afeab3345c8cacc12a0c
BLAKE2b-256 e54eaa55fea5175ed501403ba9eb069e59acf08c8c0b6bd151089796c8b48647

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ec0f7394064b65ab53cd7ff4c96bc518a4edc990f00cd7e8f6d6d56a2ec6116b
MD5 2452fcb8882c28242095a68a22ae920b
BLAKE2b-256 8e3458c09dfe9149a4728f9f5b10d33510c38d6e83c70af3ca4884bfdcc542d2

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.10.1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 35b62f3ee3687ba9e438c1c75fd76c01a7da5e4334917c1d34afa84df5c46347
MD5 7b139608b2ee400d087556bac737faca
BLAKE2b-256 8810b35fcb8c70de3470a56cd9dc89d0effdb77b1564767d44ef39abf6ea05d8

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 061b38d9b60ced19c2bc3de3bca29d9b94498aa5179fed010972a7b75c6ba57b
MD5 a9189b6768b16c8ce50ce230d237ed12
BLAKE2b-256 ed7c3679b5a6f050f874a69674cf60ee8335daaaafa2cf4086c2cedce7e3d4fc

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 834162d5e62049a429fbd2e74fad5c0e814faaa11610a602c01f0988c1e71f73
MD5 306596d1cb3caa35f9a13267f68a23a6
BLAKE2b-256 51da34cb4c10af0eff3dcc45eb31f26df82041d2650d9c743cd2b11b0e9931e3

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e4e72375549db971e6b878b5597faff19eadd8c509ead969d5621a0fa5fdba4c
MD5 3b1d914850e343c42423221c5d1dcf0a
BLAKE2b-256 a722e9a6f371e1ce302bd80bd4c16f028661d3d5167a89279284ebe784d8a330

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8f36d8c73dc01a3b314a05ed6712a95e4aaf7ad8fdc7658c1df35366dce57684
MD5 1f6ac23a4ee7e8f9ea49563aa95e4358
BLAKE2b-256 fbd3220899dd12dc8cdbb6767e33fc8d1dd8380b725f42037e1f774e15b40a0b

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: blosc-1.10.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3cd70d0008430d9c7f9b2e59e3765e50da554a81706e832f6243e4302c6b3e25
MD5 becf9687cd7a0873b65c041c6175db9d
BLAKE2b-256 2fb5765b00658f29ab5fec0341e9e0a47b8b12d0b5fa3e1d18cff45e64560997

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3f9d11519447e0de13be4a34bcc7c395283abf29e21eb0e2c71da5e60e59ef50
MD5 ed9266833f39e597554bd629c711a780
BLAKE2b-256 f9d789e22c31dd7687f12dc041a57ccfdaaff331c47c2b53e6beaeffec3d4c92

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.10.1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c515cb58b5bec3c638c559de16180fba3f1407934a5836c2cecc71f2ed1ab969
MD5 045652a90debfaabb8c2128a03787f61
BLAKE2b-256 014ab317301740875f776f5c64f62f09d9559ade1055cdfb94e3a3db59b0e936

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 49bb2dbab81ba690aad6401b9b01a125232a2eefbcff6f85a5bd591b19221f2f
MD5 72faf3ffb1f4ac3fce899712ba1a6dc0
BLAKE2b-256 c6fe35570f4dc2e91b885bdfd2dfc0fd7bd93a2814289a71085bc0fe234ede1c

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 58b3b51d3e1d9f505e2e52455159dc5817faa836b3b485ae289775403e20240a
MD5 f769d4093317ad5ef3ddf1f6d9fddf15
BLAKE2b-256 3ad97c7e85c71800d07151c1d5ce7ea0ca14fceb225b4c5e70b6403cb8181bd5

See more details on using hashes here.

File details

Details for the file blosc-1.10.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8759044e7f814e462f8dce5fe5df8d4ea309a779afef78d6f04911e9243dc7df
MD5 0943d926960e3c792cb875263b654811
BLAKE2b-256 59c10754dbb543d0499185a0865ee64c368a8646225da50d9d8d7b8efbd385a9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page