Skip to main content

Blosc data compressor

Project description

python-blosc: a Python wrapper for the extremely fast Blosc compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc

URL:

http://python-blosc.blosc.org

PyPi:

version

Anaconda:

anaconda

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (http://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc a Python package that wraps Blosc. python-blosc supports Python 3.6 or higher versions.

Installing

You can install binary packages with conda:

$ conda install -c conda-forge python-blosc

Or, install it as a typical Python source package (requires c-compiler and Python headers) from PyPi using pip:

$ pip install blosc

Documentation

The Sphinx based documentation is here:

http://python-blosc.blosc.org

Also, some examples are available on python-blosc wiki page:

http://github.com/blosc/python-blosc/wiki

Lastly, here is the recording and the slides from the talk “Compress me stupid” at the EuroPython 2014.

Building

If you need more control, there are different ways to compile python-blosc, depending if you want to link with an already installed Blosc library or not.

Installing via setuptools

python-blosc comes with the Blosc sources with it and can be built with:

$ python -m pip install -r requirements-dev.txt
$ python setup.py build_ext --inplace

Any codec can be enabled (=1) or disabled (=0) on this build-path with the appropriate OS environment variables INCLUDE_LZ4, INCLUDE_SNAPPY, INCLUDE_ZLIB, and INCLUDE_ZLIB. By default all the codecs in Blosc are enabled except Snappy (due to some issues with C++ with the gcc toolchain).

Compiler specific optimisations are automatically enabled by inspecting the CPU flags building Blosc. They can be manually disabled by setting the following environmental variables: DISABLE_BLOSC_SSE2 and DISABLE_BLOSC_AVX2.

setuptools is limited to using the compiler specified in the environment variable CC which on posix systems is usually gcc. This often causes trouble with the Snappy codec, which is written in C++, and as a result Snappy is no longer compiled by default. This problem is not known to affect MSVC or clang. Snappy is considered optional in Blosc as its compression performance is below that of the other codecs.

That’s all. You can proceed with testing section now.

Compiling with an installed Blosc library

This approach uses pre-built, fully optimized versions of Blosc built via CMake.

Go to https://github.com/Blosc/c-blosc/releases and download and install the C-Blosc library. Then, you can tell python-blosc where is the C-Blosc library in a couple of ways:

Using an environment variable:

$ BLOSC_DIR=/usr/local     (or "set BLOSC_DIR=\blosc" on Win)
$ export BLOSC_DIR         (not needed on Win)
$ python setup.py build_clib
$ python setup.py build_ext --inplace

Using a flag:

$ python setup.py build_clib
$ python setup.py build_ext --inplace --blosc=/usr/local

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

$ PYTHONPATH=.   (or "set PYTHONPATH=." on Win)
$ export PYTHONPATH=.  (not needed on Win)
$ python blosc/test.py  (add -v for verbose mode)

Or alternatively, you can use the third-party nosetests script:

$ nosetests --with-doctest (add -v for verbose mode)

Once installed, you can re-run the tests at any time with:

$ python -c "import blosc; blosc.test()"

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

$ PYTHONPATH=. python bench/compress_ptr.py

Just to whet your appetite, here are the results for an Intel Xeon E5-2695 v3 @ 2.30GHz, running Python 3.5, CentOS 7, but YMMV (and will vary!):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.5.1.dev0
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.7
  Zstd: 1.1.2
Python version: 3.5.2 |Continuum Analytics, Inc.| (default, Jul  2 2016, 17:53:06)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
Platform: Linux-3.10.0-327.18.2.el7.x86_64-x86_64 (#1 SMP Thu May 12 11:03:55 UTC 2016)
Linux dist: CentOS Linux 7.2.1511
Processor: x86_64
Byte-ordering: little
Detected cores: 56
Number of threads to use by default: 4
  -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** ctypes.memmove() *** Time for memcpy(): 0.276 s (2.70 GB/s)

Times for compressing/decompressing with clevel=5 and 24 threads

*** the arange linear distribution ***
  *** blosclz , noshuffle  ***  0.382 s (1.95 GB/s) / 0.300 s (2.48 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.042 s (17.77 GB/s) / 0.027 s (27.18 GB/s)   Compr. ratio:  57.1x
  *** blosclz , bitshuffle ***  0.094 s (7.94 GB/s) / 0.041 s (18.28 GB/s)    Compr. ratio:  74.0x
  *** lz4     , noshuffle  ***  0.156 s (4.79 GB/s) / 0.052 s (14.30 GB/s)    Compr. ratio:   2.0x
  *** lz4     , shuffle    ***  0.033 s (22.58 GB/s) / 0.034 s (22.03 GB/s)   Compr. ratio:  68.6x
  *** lz4     , bitshuffle ***  0.059 s (12.63 GB/s) / 0.053 s (14.18 GB/s)   Compr. ratio:  33.1x
  *** lz4hc   , noshuffle  ***  0.443 s (1.68 GB/s) / 0.070 s (10.62 GB/s)    Compr. ratio:   2.0x
  *** lz4hc   , shuffle    ***  0.102 s (7.31 GB/s) / 0.029 s (25.42 GB/s)    Compr. ratio:  97.5x
  *** lz4hc   , bitshuffle ***  0.206 s (3.62 GB/s) / 0.038 s (19.85 GB/s)    Compr. ratio: 180.5x
  *** snappy  , noshuffle  ***  0.154 s (4.84 GB/s) / 0.056 s (13.28 GB/s)    Compr. ratio:   2.0x
  *** snappy  , shuffle    ***  0.044 s (16.89 GB/s) / 0.047 s (15.95 GB/s)   Compr. ratio:  17.4x
  *** snappy  , bitshuffle ***  0.064 s (11.58 GB/s) / 0.061 s (12.26 GB/s)   Compr. ratio:  18.2x
  *** zlib    , noshuffle  ***  1.172 s (0.64 GB/s) / 0.135 s (5.50 GB/s)     Compr. ratio:   5.3x
  *** zlib    , shuffle    ***  0.260 s (2.86 GB/s) / 0.086 s (8.67 GB/s)     Compr. ratio: 120.8x
  *** zlib    , bitshuffle ***  0.262 s (2.84 GB/s) / 0.094 s (7.96 GB/s)     Compr. ratio: 260.1x
  *** zstd    , noshuffle  ***  0.973 s (0.77 GB/s) / 0.093 s (8.00 GB/s)     Compr. ratio:   7.8x
  *** zstd    , shuffle    ***  0.093 s (7.97 GB/s) / 0.023 s (32.71 GB/s)    Compr. ratio: 156.7x
  *** zstd    , bitshuffle ***  0.115 s (6.46 GB/s) / 0.029 s (25.60 GB/s)    Compr. ratio: 320.6x

*** the linspace linear distribution ***
  *** blosclz , noshuffle  ***  0.341 s (2.19 GB/s) / 0.291 s (2.56 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.132 s (5.65 GB/s) / 0.023 s (33.10 GB/s)    Compr. ratio:   2.0x
  *** blosclz , bitshuffle ***  0.166 s (4.50 GB/s) / 0.036 s (20.89 GB/s)    Compr. ratio:   2.8x
  *** lz4     , noshuffle  ***  0.142 s (5.26 GB/s) / 0.028 s (27.07 GB/s)    Compr. ratio:   1.0x
  *** lz4     , shuffle    ***  0.093 s (8.01 GB/s) / 0.030 s (24.87 GB/s)    Compr. ratio:   3.4x
  *** lz4     , bitshuffle ***  0.102 s (7.31 GB/s) / 0.039 s (19.13 GB/s)    Compr. ratio:   5.3x
  *** lz4hc   , noshuffle  ***  0.700 s (1.06 GB/s) / 0.044 s (16.77 GB/s)    Compr. ratio:   1.1x
  *** lz4hc   , shuffle    ***  0.203 s (3.67 GB/s) / 0.021 s (36.22 GB/s)    Compr. ratio:   8.6x
  *** lz4hc   , bitshuffle ***  0.342 s (2.18 GB/s) / 0.028 s (26.50 GB/s)    Compr. ratio:  14.2x
  *** snappy  , noshuffle  ***  0.271 s (2.75 GB/s) / 0.274 s (2.72 GB/s)     Compr. ratio:   1.0x
  *** snappy  , shuffle    ***  0.099 s (7.54 GB/s) / 0.042 s (17.55 GB/s)    Compr. ratio:   4.2x
  *** snappy  , bitshuffle ***  0.127 s (5.86 GB/s) / 0.043 s (17.20 GB/s)    Compr. ratio:   6.1x
  *** zlib    , noshuffle  ***  1.525 s (0.49 GB/s) / 0.158 s (4.70 GB/s)     Compr. ratio:   1.6x
  *** zlib    , shuffle    ***  0.346 s (2.15 GB/s) / 0.098 s (7.59 GB/s)     Compr. ratio:  10.7x
  *** zlib    , bitshuffle ***  0.420 s (1.78 GB/s) / 0.104 s (7.20 GB/s)     Compr. ratio:  18.0x
  *** zstd    , noshuffle  ***  1.061 s (0.70 GB/s) / 0.096 s (7.79 GB/s)     Compr. ratio:   1.9x
  *** zstd    , shuffle    ***  0.203 s (3.68 GB/s) / 0.052 s (14.21 GB/s)    Compr. ratio:  14.2x
  *** zstd    , bitshuffle ***  0.251 s (2.97 GB/s) / 0.047 s (15.84 GB/s)    Compr. ratio:  22.2x

*** the random distribution ***
  *** blosclz , noshuffle  ***  0.340 s (2.19 GB/s) / 0.285 s (2.61 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.091 s (8.21 GB/s) / 0.017 s (44.29 GB/s)    Compr. ratio:   3.9x
  *** blosclz , bitshuffle ***  0.080 s (9.27 GB/s) / 0.029 s (26.12 GB/s)    Compr. ratio:   6.1x
  *** lz4     , noshuffle  ***  0.150 s (4.95 GB/s) / 0.027 s (28.05 GB/s)    Compr. ratio:   2.4x
  *** lz4     , shuffle    ***  0.068 s (11.02 GB/s) / 0.029 s (26.03 GB/s)   Compr. ratio:   4.5x
  *** lz4     , bitshuffle ***  0.063 s (11.87 GB/s) / 0.054 s (13.70 GB/s)   Compr. ratio:   6.2x
  *** lz4hc   , noshuffle  ***  0.645 s (1.15 GB/s) / 0.019 s (39.22 GB/s)    Compr. ratio:   3.5x
  *** lz4hc   , shuffle    ***  0.257 s (2.90 GB/s) / 0.022 s (34.62 GB/s)    Compr. ratio:   5.1x
  *** lz4hc   , bitshuffle ***  0.128 s (5.80 GB/s) / 0.029 s (25.52 GB/s)    Compr. ratio:   6.2x
  *** snappy  , noshuffle  ***  0.164 s (4.54 GB/s) / 0.048 s (15.46 GB/s)    Compr. ratio:   2.2x
  *** snappy  , shuffle    ***  0.082 s (9.09 GB/s) / 0.043 s (17.39 GB/s)    Compr. ratio:   4.3x
  *** snappy  , bitshuffle ***  0.071 s (10.48 GB/s) / 0.046 s (16.08 GB/s)   Compr. ratio:   5.0x
  *** zlib    , noshuffle  ***  1.223 s (0.61 GB/s) / 0.093 s (7.97 GB/s)     Compr. ratio:   4.0x
  *** zlib    , shuffle    ***  0.636 s (1.17 GB/s) / 0.126 s (5.89 GB/s)     Compr. ratio:   5.5x
  *** zlib    , bitshuffle ***  0.327 s (2.28 GB/s) / 0.109 s (6.81 GB/s)     Compr. ratio:   6.2x
  *** zstd    , noshuffle  ***  1.432 s (0.52 GB/s) / 0.103 s (7.27 GB/s)     Compr. ratio:   4.2x
  *** zstd    , shuffle    ***  0.388 s (1.92 GB/s) / 0.031 s (23.71 GB/s)    Compr. ratio:   5.9x
  *** zstd    , bitshuffle ***  0.127 s (5.86 GB/s) / 0.033 s (22.77 GB/s)    Compr. ratio:   6.4x

Also, Blosc works quite well on ARM processors (even without NEON support yet):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.4.4
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.8
  Zstd: 1.1.2
Python version: 3.6.0 (default, Dec 31 2016, 21:20:16)
[GCC 4.9.2]
Platform: Linux-3.4.113-sun8i-armv7l (#50 SMP PREEMPT Mon Nov 14 08:41:55 CET 2016)
Linux dist: debian 9.0
Processor: not recognized
Byte-ordering: little
Detected cores: 4
Number of threads to use by default: 4
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
  *** ctypes.memmove() *** Time for memcpy():   0.015 s (93.57 MB/s)

Times for compressing/decompressing with clevel=5 and 4 threads

*** user input ***
  *** blosclz , noshuffle  ***  0.015 s (89.93 MB/s) / 0.010 s (138.32 MB/s)    Compr. ratio:   2.7x
  *** blosclz , shuffle    ***  0.023 s (60.25 MB/s) / 0.012 s (112.71 MB/s)    Compr. ratio:   2.3x
  *** blosclz , bitshuffle ***  0.018 s (77.63 MB/s) / 0.021 s (66.76 MB/s)     Compr. ratio:   7.3x
  *** lz4     , noshuffle  ***  0.008 s (177.14 MB/s) / 0.009 s (159.00 MB/s)   Compr. ratio:   3.6x
  *** lz4     , shuffle    ***  0.010 s (131.29 MB/s) / 0.012 s (117.69 MB/s)   Compr. ratio:   3.5x
  *** lz4     , bitshuffle ***  0.015 s (89.97 MB/s) / 0.022 s (63.62 MB/s)     Compr. ratio:   8.4x
  *** lz4hc   , noshuffle  ***  0.071 s (19.30 MB/s) / 0.007 s (186.64 MB/s)    Compr. ratio:   8.6x
  *** lz4hc   , shuffle    ***  0.079 s (17.30 MB/s) / 0.014 s (95.99 MB/s)     Compr. ratio:   6.2x
  *** lz4hc   , bitshuffle ***  0.062 s (22.23 MB/s) / 0.027 s (51.53 MB/s)     Compr. ratio:   9.7x
  *** snappy  , noshuffle  ***  0.008 s (173.87 MB/s) / 0.009 s (148.77 MB/s)   Compr. ratio:   4.4x
  *** snappy  , shuffle    ***  0.011 s (123.22 MB/s) / 0.016 s (85.16 MB/s)    Compr. ratio:   4.4x
  *** snappy  , bitshuffle ***  0.015 s (89.02 MB/s) / 0.021 s (64.87 MB/s)     Compr. ratio:   6.2x
  *** zlib    , noshuffle  ***  0.047 s (29.26 MB/s) / 0.011 s (121.83 MB/s)    Compr. ratio:  14.7x
  *** zlib    , shuffle    ***  0.080 s (17.20 MB/s) / 0.022 s (63.61 MB/s)     Compr. ratio:   9.4x
  *** zlib    , bitshuffle ***  0.059 s (23.50 MB/s) / 0.033 s (41.10 MB/s)     Compr. ratio:  10.5x
  *** zstd    , noshuffle  ***  0.113 s (12.21 MB/s) / 0.011 s (124.64 MB/s)    Compr. ratio:  15.6x
  *** zstd    , shuffle    ***  0.154 s (8.92 MB/s) / 0.026 s (52.56 MB/s)      Compr. ratio:   9.9x
  *** zstd    , bitshuffle ***  0.116 s (11.86 MB/s) / 0.036 s (38.40 MB/s)     Compr. ratio:  11.4x

For details on the ARM benchmark see: https://github.com/Blosc/python-blosc/issues/105

In case you find your own results interesting, please report them back to the authors!

License

The software is licenses under a 3-Clause BSD licsense. A copy of the python-blosc license can be found in LICENSE.txt. A copy of all licenses can be found in LICENSES/.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

http://groups.google.es/group/blosc


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc-1.10.1.dev0.tar.gz (845.6 kB view details)

Uploaded Source

Built Distributions

blosc-1.10.1.dev0-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc-1.10.1.dev0-cp39-cp39-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

blosc-1.10.1.dev0-cp39-cp39-manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9

blosc-1.10.1.dev0-cp39-cp39-manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9

blosc-1.10.1.dev0-cp39-cp39-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.9

blosc-1.10.1.dev0-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc-1.10.1.dev0-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc-1.10.1.dev0-cp38-cp38-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

blosc-1.10.1.dev0-cp38-cp38-manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8

blosc-1.10.1.dev0-cp38-cp38-manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8

blosc-1.10.1.dev0-cp38-cp38-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.8

blosc-1.10.1.dev0-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

blosc-1.10.1.dev0-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

blosc-1.10.1.dev0-cp37-cp37m-win32.whl (1.3 MB view details)

Uploaded CPython 3.7m Windows x86

blosc-1.10.1.dev0-cp37-cp37m-manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m

blosc-1.10.1.dev0-cp37-cp37m-manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m

blosc-1.10.1.dev0-cp37-cp37m-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m

blosc-1.10.1.dev0-cp37-cp37m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file blosc-1.10.1.dev0.tar.gz.

File metadata

  • Download URL: blosc-1.10.1.dev0.tar.gz
  • Upload date:
  • Size: 845.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0.tar.gz
Algorithm Hash digest
SHA256 60f6a01d7428d9df3be238a5bbe6fafaad649df5c991f4bd712f9238b0d1162f
MD5 5cb21f43df88bdfe86d5d4ac83570b12
BLAKE2b-256 447b4b9f52b5951bfaf7e57833c37e8dd04b7d761478ea455a62e0f176c6b7bb

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8bb138964447df4c05e38f6c112fd1dc241cddcdaa76346729d193f737cd4e30
MD5 47934ace93619eaaa647e3b89b195f01
BLAKE2b-256 c1b7589e6a297652c5f265392284810afe45daa87dc143e448293b88d52a9d58

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 79f712ae2fae7bf000e32b925b5986fb37b337c39c623c5b25bd9e8db5bb28c8
MD5 c84f2e952a4fab64c1c34cdc56710b1f
BLAKE2b-256 8ca7b691b04e97c5b888796b53e53f943d89b158a7b0a6f7ba7d2c0a618e3349

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp39-cp39-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6fc1efa53da5cf8c3921087a6cef0545290edfea13ede6a0ba05b7f1677020f7
MD5 d9756ecf565325b17701f06a8d562a6d
BLAKE2b-256 dab0a1993fd5377f37a28bd5a1e8adf7c81b06b44ec5cdf5ba6f3c019ba35efd

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp39-cp39-manylinux2014_i686.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp39-cp39-manylinux2014_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp39-cp39-manylinux2014_i686.whl
Algorithm Hash digest
SHA256 06a9330cf6fb8749de005de8aaa580fec13d24b889b756f35668ec737482c5a0
MD5 c107255d63d744c5b26623175be6b01e
BLAKE2b-256 883c97b70cdbcebb9bab788ae5ceda772a9a2d7ad6f19442457ae60e039ff644

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 bbbe06f4369f29a949f912a34221a554405182759e341397d0eb1bd5fc4d4aab
MD5 dd7566d11cba3c5172cd5290bb4e2d26
BLAKE2b-256 2b460b0b24a55cf3b8d72b85fdfd95ffa759a0401917ed61a7b31c5a582f4ffd

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 18f644b07327c1e6ab7320b727260d8d506011ce1bec8b25be7c58bc5846ef5c
MD5 b00026741e868043d52723f1a78f9b06
BLAKE2b-256 2ae7b8e2443655218343f6d8786292ed5e1156a6202f09b42842c6d94901447d

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f1d962293f778f88321a82888d274094d57a7501dc96f188faf894c4143be2f5
MD5 fe3cc7304c4346c5918c38114630491a
BLAKE2b-256 a6f37236a1e5bd0b5a942b240ff9a0a624612863afff1d22cdef4e9043263cf7

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp38-cp38-win32.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c960a4c482dab76781081bb7132c035ec3693279907db8cabc4c15c364394913
MD5 b1689e4f4acc878d9912a68c9eea6415
BLAKE2b-256 5a8e1b1f483fa5508e68b91f4533573240dcef4e6f5278c60cd302757e41f646

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d2d4c10a8baee51126cc04ffbb2b0e26371824d4f518edc82c9e92a496d1f24
MD5 408674bfee1e861538b9f75dfd2dd29e
BLAKE2b-256 7317a77dd53f36019c1b3407adfac75494430be7b49ea6604d6d7f4c0a37eceb

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp38-cp38-manylinux2014_i686.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp38-cp38-manylinux2014_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp38-cp38-manylinux2014_i686.whl
Algorithm Hash digest
SHA256 68a6d1781c150f6d5cf8e29d99c32bb712b9e6b80183a29aefdd19d38f6d95a4
MD5 cddd36a35255724a156157ecfe402ad4
BLAKE2b-256 2cf454951d3afbf34ff46b8502a3fb9b301cb3d1d4f30cb4a2ef2e2c1d72a360

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 51e886ae41c7db8e514cc23f66ec4a0c8ec3017abe2a3865f1bf2849f0d6b941
MD5 78a487c0c0720f3355210d10bca7e845
BLAKE2b-256 15631b81fc4aba880977112689fbdb3e0043f4daac5c73f3bf339a0def9b119b

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 882d17d6d57a02ed14e586a9c296d070ba52a1250661438ab8683fdac7460a7b
MD5 be45159c0687e8301afbac62c1d66464
BLAKE2b-256 c7e9f6e7942bf669c763c6070cb13dff2f2b6f44bbc5e30395b2d9312e3767d5

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 60fc48dcdc742a463d0812d737a434cd26b1ff21ecb7eca90c91678e196efb56
MD5 368d42eeb07dc56d2854d3008c471fce
BLAKE2b-256 eee4e78c10b37d8a939c26b758e57b14c7b3220f807264ae0dc274db30b1b850

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 d25859a1778de870ebd1372730b5e265691796a45aa16534db902d8affa3e146
MD5 69e7e1a17b7e9dd86ca0b4fca03395f9
BLAKE2b-256 320bc711b82a5bce1e52888be16399cf189c5941e9033cf71f2c1d886e107723

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89fc7b8a59bb2ac8b811413fe1b44190c1d5fb81c5de94960b16679ebf0eff65
MD5 b0167be4ebbf983c43834a2fe06da081
BLAKE2b-256 52fe7276a683e92443f394a770e5b5a0fe5912156dfaa785e6b3e7e0c9ad73ba

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp37-cp37m-manylinux2014_i686.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp37-cp37m-manylinux2014_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp37-cp37m-manylinux2014_i686.whl
Algorithm Hash digest
SHA256 326e0957ca6ed59e2aa1c82e6a434d7667819bd2cce0c4352c8e4128bbc9f3df
MD5 badca7624e8613d749ccf49a06faacad
BLAKE2b-256 e889a7d01a9b91d4425d34126d0020af146fa0662740e501f799de7ea90fca71

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 78ca523e64d71ea3cb71edb31ac6fa3f826805717580894e66115d5977796f43
MD5 d3e688c9fa04e89d0063af0004fa738f
BLAKE2b-256 ce413d9f6eae642b4d62f104f16480e38c21126a44f126fd1dd3766b8a7c4172

See more details on using hashes here.

File details

Details for the file blosc-1.10.1.dev0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.1.dev0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.7

File hashes

Hashes for blosc-1.10.1.dev0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c5a3ee35eac2998fc417c3bc4b44de460d94c9d3a2e989d50b145e96cdb1f171
MD5 be2a9b5526a9f0fed7a06efff890616e
BLAKE2b-256 794fb6a9d93893757ba2b2e254078a90d819c1b649b74ee4ff5e714072151631

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page