Skip to main content

Blosc data compressor

Project description

python-blosc: a Python wrapper for the extremely fast Blosc compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc

URL:

http://python-blosc.blosc.org

PyPi:

version

Anaconda:

anaconda

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (http://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc a Python package that wraps Blosc. python-blosc supports Python 3.7 or higher versions.

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

$ pip install blosc

Documentation

The Sphinx based documentation is here:

http://python-blosc.blosc.org

Also, some examples are available on python-blosc wiki page:

http://github.com/blosc/python-blosc/wiki

Lastly, here is the recording and the slides from the talk “Compress me stupid” at the EuroPython 2014.

Building

If you need more control, there are different ways to compile python-blosc, depending if you want to link with an already installed Blosc library or not.

Installing via setuptools

python-blosc comes with the Blosc sources with it and can be built with:

$ python -m pip install -r requirements-dev.txt
$ python setup.py build_ext --inplace

Any codec can be enabled (=1) or disabled (=0) on this build-path with the appropriate OS environment variables INCLUDE_LZ4, INCLUDE_SNAPPY, INCLUDE_ZLIB, and INCLUDE_ZLIB. By default all the codecs in Blosc are enabled except Snappy (due to some issues with C++ with the gcc toolchain).

Compiler specific optimisations are automatically enabled by inspecting the CPU flags building Blosc. They can be manually disabled by setting the following environmental variables: DISABLE_BLOSC_SSE2 and DISABLE_BLOSC_AVX2.

setuptools is limited to using the compiler specified in the environment variable CC which on posix systems is usually gcc. This often causes trouble with the Snappy codec, which is written in C++, and as a result Snappy is no longer compiled by default. This problem is not known to affect MSVC or clang. Snappy is considered optional in Blosc as its compression performance is below that of the other codecs.

That’s all. You can proceed with testing section now.

Compiling with an installed Blosc library

This approach uses pre-built, fully optimized versions of Blosc built via CMake.

Go to https://github.com/Blosc/c-blosc/releases and download and install the C-Blosc library. Then, you can tell python-blosc where is the C-Blosc library in a couple of ways:

Using an environment variable:

$ BLOSC_DIR=/usr/local     (or "set BLOSC_DIR=\blosc" on Win)
$ export BLOSC_DIR         (not needed on Win)
$ python setup.py build_clib
$ python setup.py build_ext --inplace

Using a flag:

$ python setup.py build_clib
$ python setup.py build_ext --inplace --blosc=/usr/local

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

$ PYTHONPATH=.   (or "set PYTHONPATH=." on Win)
$ export PYTHONPATH=.  (not needed on Win)
$ python blosc/test.py  (add -v for verbose mode)

Or alternatively, you can use the third-party nosetests script:

$ nosetests --with-doctest (add -v for verbose mode)

Once installed, you can re-run the tests at any time with:

$ python -c "import blosc; blosc.test()"

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

$ PYTHONPATH=. python bench/compress_ptr.py

Just to whet your appetite, here are the results for an Intel Xeon E5-2695 v3 @ 2.30GHz, running Python 3.5, CentOS 7, but YMMV (and will vary!):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.5.1.dev0
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.7
  Zstd: 1.1.2
Python version: 3.5.2 |Continuum Analytics, Inc.| (default, Jul  2 2016, 17:53:06)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
Platform: Linux-3.10.0-327.18.2.el7.x86_64-x86_64 (#1 SMP Thu May 12 11:03:55 UTC 2016)
Linux dist: CentOS Linux 7.2.1511
Processor: x86_64
Byte-ordering: little
Detected cores: 56
Number of threads to use by default: 4
  -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** ctypes.memmove() *** Time for memcpy(): 0.276 s (2.70 GB/s)

Times for compressing/decompressing with clevel=5 and 24 threads

*** the arange linear distribution ***
  *** blosclz , noshuffle  ***  0.382 s (1.95 GB/s) / 0.300 s (2.48 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.042 s (17.77 GB/s) / 0.027 s (27.18 GB/s)   Compr. ratio:  57.1x
  *** blosclz , bitshuffle ***  0.094 s (7.94 GB/s) / 0.041 s (18.28 GB/s)    Compr. ratio:  74.0x
  *** lz4     , noshuffle  ***  0.156 s (4.79 GB/s) / 0.052 s (14.30 GB/s)    Compr. ratio:   2.0x
  *** lz4     , shuffle    ***  0.033 s (22.58 GB/s) / 0.034 s (22.03 GB/s)   Compr. ratio:  68.6x
  *** lz4     , bitshuffle ***  0.059 s (12.63 GB/s) / 0.053 s (14.18 GB/s)   Compr. ratio:  33.1x
  *** lz4hc   , noshuffle  ***  0.443 s (1.68 GB/s) / 0.070 s (10.62 GB/s)    Compr. ratio:   2.0x
  *** lz4hc   , shuffle    ***  0.102 s (7.31 GB/s) / 0.029 s (25.42 GB/s)    Compr. ratio:  97.5x
  *** lz4hc   , bitshuffle ***  0.206 s (3.62 GB/s) / 0.038 s (19.85 GB/s)    Compr. ratio: 180.5x
  *** snappy  , noshuffle  ***  0.154 s (4.84 GB/s) / 0.056 s (13.28 GB/s)    Compr. ratio:   2.0x
  *** snappy  , shuffle    ***  0.044 s (16.89 GB/s) / 0.047 s (15.95 GB/s)   Compr. ratio:  17.4x
  *** snappy  , bitshuffle ***  0.064 s (11.58 GB/s) / 0.061 s (12.26 GB/s)   Compr. ratio:  18.2x
  *** zlib    , noshuffle  ***  1.172 s (0.64 GB/s) / 0.135 s (5.50 GB/s)     Compr. ratio:   5.3x
  *** zlib    , shuffle    ***  0.260 s (2.86 GB/s) / 0.086 s (8.67 GB/s)     Compr. ratio: 120.8x
  *** zlib    , bitshuffle ***  0.262 s (2.84 GB/s) / 0.094 s (7.96 GB/s)     Compr. ratio: 260.1x
  *** zstd    , noshuffle  ***  0.973 s (0.77 GB/s) / 0.093 s (8.00 GB/s)     Compr. ratio:   7.8x
  *** zstd    , shuffle    ***  0.093 s (7.97 GB/s) / 0.023 s (32.71 GB/s)    Compr. ratio: 156.7x
  *** zstd    , bitshuffle ***  0.115 s (6.46 GB/s) / 0.029 s (25.60 GB/s)    Compr. ratio: 320.6x

*** the linspace linear distribution ***
  *** blosclz , noshuffle  ***  0.341 s (2.19 GB/s) / 0.291 s (2.56 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.132 s (5.65 GB/s) / 0.023 s (33.10 GB/s)    Compr. ratio:   2.0x
  *** blosclz , bitshuffle ***  0.166 s (4.50 GB/s) / 0.036 s (20.89 GB/s)    Compr. ratio:   2.8x
  *** lz4     , noshuffle  ***  0.142 s (5.26 GB/s) / 0.028 s (27.07 GB/s)    Compr. ratio:   1.0x
  *** lz4     , shuffle    ***  0.093 s (8.01 GB/s) / 0.030 s (24.87 GB/s)    Compr. ratio:   3.4x
  *** lz4     , bitshuffle ***  0.102 s (7.31 GB/s) / 0.039 s (19.13 GB/s)    Compr. ratio:   5.3x
  *** lz4hc   , noshuffle  ***  0.700 s (1.06 GB/s) / 0.044 s (16.77 GB/s)    Compr. ratio:   1.1x
  *** lz4hc   , shuffle    ***  0.203 s (3.67 GB/s) / 0.021 s (36.22 GB/s)    Compr. ratio:   8.6x
  *** lz4hc   , bitshuffle ***  0.342 s (2.18 GB/s) / 0.028 s (26.50 GB/s)    Compr. ratio:  14.2x
  *** snappy  , noshuffle  ***  0.271 s (2.75 GB/s) / 0.274 s (2.72 GB/s)     Compr. ratio:   1.0x
  *** snappy  , shuffle    ***  0.099 s (7.54 GB/s) / 0.042 s (17.55 GB/s)    Compr. ratio:   4.2x
  *** snappy  , bitshuffle ***  0.127 s (5.86 GB/s) / 0.043 s (17.20 GB/s)    Compr. ratio:   6.1x
  *** zlib    , noshuffle  ***  1.525 s (0.49 GB/s) / 0.158 s (4.70 GB/s)     Compr. ratio:   1.6x
  *** zlib    , shuffle    ***  0.346 s (2.15 GB/s) / 0.098 s (7.59 GB/s)     Compr. ratio:  10.7x
  *** zlib    , bitshuffle ***  0.420 s (1.78 GB/s) / 0.104 s (7.20 GB/s)     Compr. ratio:  18.0x
  *** zstd    , noshuffle  ***  1.061 s (0.70 GB/s) / 0.096 s (7.79 GB/s)     Compr. ratio:   1.9x
  *** zstd    , shuffle    ***  0.203 s (3.68 GB/s) / 0.052 s (14.21 GB/s)    Compr. ratio:  14.2x
  *** zstd    , bitshuffle ***  0.251 s (2.97 GB/s) / 0.047 s (15.84 GB/s)    Compr. ratio:  22.2x

*** the random distribution ***
  *** blosclz , noshuffle  ***  0.340 s (2.19 GB/s) / 0.285 s (2.61 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.091 s (8.21 GB/s) / 0.017 s (44.29 GB/s)    Compr. ratio:   3.9x
  *** blosclz , bitshuffle ***  0.080 s (9.27 GB/s) / 0.029 s (26.12 GB/s)    Compr. ratio:   6.1x
  *** lz4     , noshuffle  ***  0.150 s (4.95 GB/s) / 0.027 s (28.05 GB/s)    Compr. ratio:   2.4x
  *** lz4     , shuffle    ***  0.068 s (11.02 GB/s) / 0.029 s (26.03 GB/s)   Compr. ratio:   4.5x
  *** lz4     , bitshuffle ***  0.063 s (11.87 GB/s) / 0.054 s (13.70 GB/s)   Compr. ratio:   6.2x
  *** lz4hc   , noshuffle  ***  0.645 s (1.15 GB/s) / 0.019 s (39.22 GB/s)    Compr. ratio:   3.5x
  *** lz4hc   , shuffle    ***  0.257 s (2.90 GB/s) / 0.022 s (34.62 GB/s)    Compr. ratio:   5.1x
  *** lz4hc   , bitshuffle ***  0.128 s (5.80 GB/s) / 0.029 s (25.52 GB/s)    Compr. ratio:   6.2x
  *** snappy  , noshuffle  ***  0.164 s (4.54 GB/s) / 0.048 s (15.46 GB/s)    Compr. ratio:   2.2x
  *** snappy  , shuffle    ***  0.082 s (9.09 GB/s) / 0.043 s (17.39 GB/s)    Compr. ratio:   4.3x
  *** snappy  , bitshuffle ***  0.071 s (10.48 GB/s) / 0.046 s (16.08 GB/s)   Compr. ratio:   5.0x
  *** zlib    , noshuffle  ***  1.223 s (0.61 GB/s) / 0.093 s (7.97 GB/s)     Compr. ratio:   4.0x
  *** zlib    , shuffle    ***  0.636 s (1.17 GB/s) / 0.126 s (5.89 GB/s)     Compr. ratio:   5.5x
  *** zlib    , bitshuffle ***  0.327 s (2.28 GB/s) / 0.109 s (6.81 GB/s)     Compr. ratio:   6.2x
  *** zstd    , noshuffle  ***  1.432 s (0.52 GB/s) / 0.103 s (7.27 GB/s)     Compr. ratio:   4.2x
  *** zstd    , shuffle    ***  0.388 s (1.92 GB/s) / 0.031 s (23.71 GB/s)    Compr. ratio:   5.9x
  *** zstd    , bitshuffle ***  0.127 s (5.86 GB/s) / 0.033 s (22.77 GB/s)    Compr. ratio:   6.4x

Also, Blosc works quite well on ARM processors (even without NEON support yet):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.4.4
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.8
  Zstd: 1.1.2
Python version: 3.6.0 (default, Dec 31 2016, 21:20:16)
[GCC 4.9.2]
Platform: Linux-3.4.113-sun8i-armv7l (#50 SMP PREEMPT Mon Nov 14 08:41:55 CET 2016)
Linux dist: debian 9.0
Processor: not recognized
Byte-ordering: little
Detected cores: 4
Number of threads to use by default: 4
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
  *** ctypes.memmove() *** Time for memcpy():   0.015 s (93.57 MB/s)

Times for compressing/decompressing with clevel=5 and 4 threads

*** user input ***
  *** blosclz , noshuffle  ***  0.015 s (89.93 MB/s) / 0.010 s (138.32 MB/s)    Compr. ratio:   2.7x
  *** blosclz , shuffle    ***  0.023 s (60.25 MB/s) / 0.012 s (112.71 MB/s)    Compr. ratio:   2.3x
  *** blosclz , bitshuffle ***  0.018 s (77.63 MB/s) / 0.021 s (66.76 MB/s)     Compr. ratio:   7.3x
  *** lz4     , noshuffle  ***  0.008 s (177.14 MB/s) / 0.009 s (159.00 MB/s)   Compr. ratio:   3.6x
  *** lz4     , shuffle    ***  0.010 s (131.29 MB/s) / 0.012 s (117.69 MB/s)   Compr. ratio:   3.5x
  *** lz4     , bitshuffle ***  0.015 s (89.97 MB/s) / 0.022 s (63.62 MB/s)     Compr. ratio:   8.4x
  *** lz4hc   , noshuffle  ***  0.071 s (19.30 MB/s) / 0.007 s (186.64 MB/s)    Compr. ratio:   8.6x
  *** lz4hc   , shuffle    ***  0.079 s (17.30 MB/s) / 0.014 s (95.99 MB/s)     Compr. ratio:   6.2x
  *** lz4hc   , bitshuffle ***  0.062 s (22.23 MB/s) / 0.027 s (51.53 MB/s)     Compr. ratio:   9.7x
  *** snappy  , noshuffle  ***  0.008 s (173.87 MB/s) / 0.009 s (148.77 MB/s)   Compr. ratio:   4.4x
  *** snappy  , shuffle    ***  0.011 s (123.22 MB/s) / 0.016 s (85.16 MB/s)    Compr. ratio:   4.4x
  *** snappy  , bitshuffle ***  0.015 s (89.02 MB/s) / 0.021 s (64.87 MB/s)     Compr. ratio:   6.2x
  *** zlib    , noshuffle  ***  0.047 s (29.26 MB/s) / 0.011 s (121.83 MB/s)    Compr. ratio:  14.7x
  *** zlib    , shuffle    ***  0.080 s (17.20 MB/s) / 0.022 s (63.61 MB/s)     Compr. ratio:   9.4x
  *** zlib    , bitshuffle ***  0.059 s (23.50 MB/s) / 0.033 s (41.10 MB/s)     Compr. ratio:  10.5x
  *** zstd    , noshuffle  ***  0.113 s (12.21 MB/s) / 0.011 s (124.64 MB/s)    Compr. ratio:  15.6x
  *** zstd    , shuffle    ***  0.154 s (8.92 MB/s) / 0.026 s (52.56 MB/s)      Compr. ratio:   9.9x
  *** zstd    , bitshuffle ***  0.116 s (11.86 MB/s) / 0.036 s (38.40 MB/s)     Compr. ratio:  11.4x

For details on the ARM benchmark see: https://github.com/Blosc/python-blosc/issues/105

In case you find your own results interesting, please report them back to the authors!

License

The software is licenses under a 3-Clause BSD licsense. A copy of the python-blosc license can be found in LICENSE.txt. A copy of all licenses can be found in LICENSES/.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

http://groups.google.es/group/blosc


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc-1.10.2.tar.gz (858.1 kB view details)

Uploaded Source

Built Distributions

blosc-1.10.2-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc-1.10.2-cp39-cp39-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

blosc-1.10.2-cp39-cp39-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

blosc-1.10.2-cp39-cp39-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

blosc-1.10.2-cp39-cp39-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9

blosc-1.10.2-cp39-cp39-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.9

blosc-1.10.2-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc-1.10.2-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc-1.10.2-cp38-cp38-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

blosc-1.10.2-cp38-cp38-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

blosc-1.10.2-cp38-cp38-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

blosc-1.10.2-cp38-cp38-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8

blosc-1.10.2-cp38-cp38-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.8

blosc-1.10.2-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

blosc-1.10.2-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

blosc-1.10.2-cp37-cp37m-win32.whl (1.3 MB view details)

Uploaded CPython 3.7m Windows x86

blosc-1.10.2-cp37-cp37m-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

blosc-1.10.2-cp37-cp37m-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

blosc-1.10.2-cp37-cp37m-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m

blosc-1.10.2-cp37-cp37m-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m

blosc-1.10.2-cp37-cp37m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file blosc-1.10.2.tar.gz.

File metadata

  • Download URL: blosc-1.10.2.tar.gz
  • Upload date:
  • Size: 858.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2.tar.gz
Algorithm Hash digest
SHA256 eeba922f52becd697dc5cfcee8d01a03ba9597a54ce91fdacd9998492acbed9b
MD5 d933f8dfe025271e82e80a3f8c07ef7d
BLAKE2b-256 1735eafd22170bf86bc578012da1cfce2eae0ea266b87b163810c88a76bfe84c

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e0462f64bfe3337de6986e24e8465a7d76a0a89ecc1c7c77482ea27cfc5990b8
MD5 358efeb7d0d081b70914ed605973b872
BLAKE2b-256 2755aef7299563c5e97600918dfe3b132ff2d2fb9ff7a2c9df0186ee38e5bcfc

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc-1.10.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 63d64811581567402959ff9be471f58dc23f42eeb242a7faa79f391e6ddabb76
MD5 a27febcf7adb021408f055ed348b1327
BLAKE2b-256 17fa42b6f9e973f37486efd83203eb80ecef6b7fb36dd2295e57b2e4eadec271

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.2-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6d23543848341807a3ce55632fc123fe4e58021a5f641854a52cc2156f19c01d
MD5 364354860635af48906db8c55e83ee9e
BLAKE2b-256 ee4b9ca8bf25451ae85c5cce76d74ff4c23ffac2c1c2317b866bb9bba9864a96

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.10.2-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 145cfb38e6804e98de4078d525208a205776bfe237b545afefea7489302ac0e4
MD5 c90f3a718086cb51c86af6538a8fa5da
BLAKE2b-256 a6261252b880847ec3ce2940d605dbe2e89688e24e4b55aed9234cef07b41d8b

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.2-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2faa8728ff165dc95a0df874bdb1961c3bc973ec1cf0428fa159c6f39dc2deb3
MD5 c81a9893a5f79ef5c32fcf8959316e10
BLAKE2b-256 8e19feb0f1f3c011548c3472d445fb737c2da980f1c1008beac0da93d388a4d4

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.2-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f1c385d26273b782f3b05045bb01748f95673ac6a8e5d2f8d79dbc6622159f97
MD5 a626dc237c62ce67f0f0f14d0a0845ee
BLAKE2b-256 dd6efc352832585e556b690dfeb59b6105c23dca222b60030753f4e91afd8fe1

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 18e5d72295d16732fec98398181e23be1251440e28f369e63fd37dbecd7b9605
MD5 380aecfa33b7bc79749d491a694288f9
BLAKE2b-256 f9e4134b704f95ec87107a85565c74aa7c9ac59bb55928c778542c60dcea84bd

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 26ae238f13387fd22c0ea0b0e712e2b39f7fffe39e54d56f4b99c0688d196a42
MD5 ca3800ec6a575809a6fd16a683cd3b2d
BLAKE2b-256 26e5a0476a8e7e5e0ae121bb8f4ae7bfb59f655c3f32688ea611c892151d12ff

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: blosc-1.10.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f41ba4eaa9a16ad6d715501d218166533d59125503c6b58685d24f0306e96be3
MD5 88962fecebfa9955a33036cec5d829ba
BLAKE2b-256 52c135e93bf1753643819e044b0cde4c278495b72d9fe22e382dffbe49fcb2a9

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b5902d9f240cf20ceb41b778b63b6e1bc8e4603daf34532a55232a5a957da1be
MD5 b7f29207f54097d0b5f21e147ecfb7c6
BLAKE2b-256 8904bcac92577d32dc9453e2a4c3c36dcac7f4da83a6b9641eba064aee7b78c3

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.10.2-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1adfcbd7c878b36639c77a1b9d8f00a73b3863cf973400840b8369a9face08ea
MD5 15085af8cca1c51fed7fe92795763743
BLAKE2b-256 e3c5ee3178263a5bded3a4ddb00ddeb150bda8a0183a7a9fd2ad878a7ecde295

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a05bcdf4f38d4a3a008140680d0366ce70d7e70411d71b151f26086c8723aa11
MD5 ab0b6d463a99a3c60d1037afa193b3aa
BLAKE2b-256 68da5af2256dbcd0cf65e15116e409165a6e61f9ee4c4ae147dbe83cc504d027

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.2-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7b91e2df706b875cd6f8c98d40f98c6cecf934a62b65dfa647a2ebee106d59a9
MD5 a26909cebcf090a7be58e8bc7e88f980
BLAKE2b-256 ac4172bd05cd22622d61c4c9eac1f28ebebdaa44b35aca2c2f615a08ade9aa30

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fe53005a6223ca7348c5dd0e2256785ba3acf8b43d47dd9ebe9ac594b9bcd8b3
MD5 b1170b940d807f9351df7f3c5af28683
BLAKE2b-256 a448e900fcf7d2baffff9a434d8ed07384e5d93236600d085a7647c57dccdb1f

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 98ff35b387b8ee4186c7e16833f8f4ad262b481c8fa86fd182d4e49b8f43699d
MD5 53370f173a0c51d10a9fe5e485b7e4bf
BLAKE2b-256 c6013c286ddb98d6879d0e1b017bfcda61d7166d3b5d3fd4baa0ad169659069b

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: blosc-1.10.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 65807c1160c883491aedf2b9dddb7dc6814da8f451b5a282a04850fb6a604e40
MD5 304254f119b6f76264d2d2021cfa9fcb
BLAKE2b-256 a699b5e6191a97dc592b9435f94e30c603b485de27c69c9d4855d8777195c9df

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b9353b99de501a7b7832354cca45b77e9813ea86e6e21208b591c45aa05a1f11
MD5 b70f28b637f52e61f401c44cbdf873e6
BLAKE2b-256 169ecd2256d981973b5c6d6c42f1fa8327afc1cb491359c4701d507b48acf708

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.10.2-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d0a539124f3544d833640e3b5429b08b1066ace2420dc553f693a969645f60e0
MD5 b91ee847b3853b1607fa04af6ed6275c
BLAKE2b-256 473d99a499f04dc7cf8b309aea7ca422323a1eb02185403127be88a573f1cd3b

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1e6ab4236f29afd3311fc3c5b3c73b76e8efdfef55f148431fb7b023765fbe15
MD5 b7e8a866c7d028c468a6250af2aea2cc
BLAKE2b-256 dd214eb78ed528ae611121888f46467fda9a964873bf5977ce546dd7bed60f59

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 044afd933b658208e6e90f6cc1873e424211e92542193ff323c89b13de66f2a6
MD5 40be76762d646b999e91c97254ced28a
BLAKE2b-256 5ed5c94ed6b38d07526649bafe8f2001a9a3fea8b0cd28f5eb64c0bec799cb5d

See more details on using hashes here.

File details

Details for the file blosc-1.10.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for blosc-1.10.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d0b02c436dfbaddd4b288c4dfb71b71970d819aa111ea45ef93bae8b4b6f6aab
MD5 7430c91d897c3a004bf28880e25070d2
BLAKE2b-256 8fd7d8af6d5c8a69e44fee3b283d04ec3576995b779a730b26d3581090eb038c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page