Skip to main content

Blosc data compressor

Project description

python-blosc: a Python wrapper for the extremely fast Blosc compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc

URL:

http://python-blosc.blosc.org

PyPi:

version

Anaconda:

anaconda

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (http://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc a Python package that wraps Blosc. python-blosc supports Python 3.7 or higher versions.

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

$ pip install blosc

Documentation

The Sphinx based documentation is here:

http://python-blosc.blosc.org

Also, some examples are available on python-blosc wiki page:

http://github.com/blosc/python-blosc/wiki

Lastly, here is the recording and the slides from the talk “Compress me stupid” at the EuroPython 2014.

Building

If you need more control, there are different ways to compile python-blosc, depending if you want to link with an already installed Blosc library or not.

Installing via setuptools

python-blosc comes with the Blosc sources with it and can be built with:

$ python -m pip install -r requirements-dev.txt
$ python setup.py build_ext --inplace

Any codec can be enabled (=1) or disabled (=0) on this build-path with the appropriate OS environment variables INCLUDE_LZ4, INCLUDE_SNAPPY, INCLUDE_ZLIB, and INCLUDE_ZLIB. By default all the codecs in Blosc are enabled except Snappy (due to some issues with C++ with the gcc toolchain).

Compiler specific optimisations are automatically enabled by inspecting the CPU flags building Blosc. They can be manually disabled by setting the following environmental variables: DISABLE_BLOSC_SSE2 and DISABLE_BLOSC_AVX2.

setuptools is limited to using the compiler specified in the environment variable CC which on posix systems is usually gcc. This often causes trouble with the Snappy codec, which is written in C++, and as a result Snappy is no longer compiled by default. This problem is not known to affect MSVC or clang. Snappy is considered optional in Blosc as its compression performance is below that of the other codecs.

That’s all. You can proceed with testing section now.

Compiling with an installed Blosc library

This approach uses pre-built, fully optimized versions of Blosc built via CMake.

Go to https://github.com/Blosc/c-blosc/releases and download and install the C-Blosc library. Then, you can tell python-blosc where is the C-Blosc library in a couple of ways:

Using an environment variable:

$ BLOSC_DIR=/usr/local     (or "set BLOSC_DIR=\blosc" on Win)
$ export BLOSC_DIR         (not needed on Win)
$ python setup.py build_clib
$ python setup.py build_ext --inplace

Using a flag:

$ python setup.py build_clib
$ python setup.py build_ext --inplace --blosc=/usr/local

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

$ PYTHONPATH=.   (or "set PYTHONPATH=." on Win)
$ export PYTHONPATH=.  (not needed on Win)
$ python blosc/test.py  (add -v for verbose mode)

Or alternatively, you can use the third-party nosetests script:

$ nosetests --with-doctest (add -v for verbose mode)

Once installed, you can re-run the tests at any time with:

$ python -c "import blosc; blosc.test()"

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

$ PYTHONPATH=. python bench/compress_ptr.py

Just to whet your appetite, here are the results for an Intel Xeon E5-2695 v3 @ 2.30GHz, running Python 3.5, CentOS 7, but YMMV (and will vary!):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.5.1.dev0
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.7
  Zstd: 1.1.2
Python version: 3.5.2 |Continuum Analytics, Inc.| (default, Jul  2 2016, 17:53:06)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
Platform: Linux-3.10.0-327.18.2.el7.x86_64-x86_64 (#1 SMP Thu May 12 11:03:55 UTC 2016)
Linux dist: CentOS Linux 7.2.1511
Processor: x86_64
Byte-ordering: little
Detected cores: 56
Number of threads to use by default: 4
  -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** ctypes.memmove() *** Time for memcpy(): 0.276 s (2.70 GB/s)

Times for compressing/decompressing with clevel=5 and 24 threads

*** the arange linear distribution ***
  *** blosclz , noshuffle  ***  0.382 s (1.95 GB/s) / 0.300 s (2.48 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.042 s (17.77 GB/s) / 0.027 s (27.18 GB/s)   Compr. ratio:  57.1x
  *** blosclz , bitshuffle ***  0.094 s (7.94 GB/s) / 0.041 s (18.28 GB/s)    Compr. ratio:  74.0x
  *** lz4     , noshuffle  ***  0.156 s (4.79 GB/s) / 0.052 s (14.30 GB/s)    Compr. ratio:   2.0x
  *** lz4     , shuffle    ***  0.033 s (22.58 GB/s) / 0.034 s (22.03 GB/s)   Compr. ratio:  68.6x
  *** lz4     , bitshuffle ***  0.059 s (12.63 GB/s) / 0.053 s (14.18 GB/s)   Compr. ratio:  33.1x
  *** lz4hc   , noshuffle  ***  0.443 s (1.68 GB/s) / 0.070 s (10.62 GB/s)    Compr. ratio:   2.0x
  *** lz4hc   , shuffle    ***  0.102 s (7.31 GB/s) / 0.029 s (25.42 GB/s)    Compr. ratio:  97.5x
  *** lz4hc   , bitshuffle ***  0.206 s (3.62 GB/s) / 0.038 s (19.85 GB/s)    Compr. ratio: 180.5x
  *** snappy  , noshuffle  ***  0.154 s (4.84 GB/s) / 0.056 s (13.28 GB/s)    Compr. ratio:   2.0x
  *** snappy  , shuffle    ***  0.044 s (16.89 GB/s) / 0.047 s (15.95 GB/s)   Compr. ratio:  17.4x
  *** snappy  , bitshuffle ***  0.064 s (11.58 GB/s) / 0.061 s (12.26 GB/s)   Compr. ratio:  18.2x
  *** zlib    , noshuffle  ***  1.172 s (0.64 GB/s) / 0.135 s (5.50 GB/s)     Compr. ratio:   5.3x
  *** zlib    , shuffle    ***  0.260 s (2.86 GB/s) / 0.086 s (8.67 GB/s)     Compr. ratio: 120.8x
  *** zlib    , bitshuffle ***  0.262 s (2.84 GB/s) / 0.094 s (7.96 GB/s)     Compr. ratio: 260.1x
  *** zstd    , noshuffle  ***  0.973 s (0.77 GB/s) / 0.093 s (8.00 GB/s)     Compr. ratio:   7.8x
  *** zstd    , shuffle    ***  0.093 s (7.97 GB/s) / 0.023 s (32.71 GB/s)    Compr. ratio: 156.7x
  *** zstd    , bitshuffle ***  0.115 s (6.46 GB/s) / 0.029 s (25.60 GB/s)    Compr. ratio: 320.6x

*** the linspace linear distribution ***
  *** blosclz , noshuffle  ***  0.341 s (2.19 GB/s) / 0.291 s (2.56 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.132 s (5.65 GB/s) / 0.023 s (33.10 GB/s)    Compr. ratio:   2.0x
  *** blosclz , bitshuffle ***  0.166 s (4.50 GB/s) / 0.036 s (20.89 GB/s)    Compr. ratio:   2.8x
  *** lz4     , noshuffle  ***  0.142 s (5.26 GB/s) / 0.028 s (27.07 GB/s)    Compr. ratio:   1.0x
  *** lz4     , shuffle    ***  0.093 s (8.01 GB/s) / 0.030 s (24.87 GB/s)    Compr. ratio:   3.4x
  *** lz4     , bitshuffle ***  0.102 s (7.31 GB/s) / 0.039 s (19.13 GB/s)    Compr. ratio:   5.3x
  *** lz4hc   , noshuffle  ***  0.700 s (1.06 GB/s) / 0.044 s (16.77 GB/s)    Compr. ratio:   1.1x
  *** lz4hc   , shuffle    ***  0.203 s (3.67 GB/s) / 0.021 s (36.22 GB/s)    Compr. ratio:   8.6x
  *** lz4hc   , bitshuffle ***  0.342 s (2.18 GB/s) / 0.028 s (26.50 GB/s)    Compr. ratio:  14.2x
  *** snappy  , noshuffle  ***  0.271 s (2.75 GB/s) / 0.274 s (2.72 GB/s)     Compr. ratio:   1.0x
  *** snappy  , shuffle    ***  0.099 s (7.54 GB/s) / 0.042 s (17.55 GB/s)    Compr. ratio:   4.2x
  *** snappy  , bitshuffle ***  0.127 s (5.86 GB/s) / 0.043 s (17.20 GB/s)    Compr. ratio:   6.1x
  *** zlib    , noshuffle  ***  1.525 s (0.49 GB/s) / 0.158 s (4.70 GB/s)     Compr. ratio:   1.6x
  *** zlib    , shuffle    ***  0.346 s (2.15 GB/s) / 0.098 s (7.59 GB/s)     Compr. ratio:  10.7x
  *** zlib    , bitshuffle ***  0.420 s (1.78 GB/s) / 0.104 s (7.20 GB/s)     Compr. ratio:  18.0x
  *** zstd    , noshuffle  ***  1.061 s (0.70 GB/s) / 0.096 s (7.79 GB/s)     Compr. ratio:   1.9x
  *** zstd    , shuffle    ***  0.203 s (3.68 GB/s) / 0.052 s (14.21 GB/s)    Compr. ratio:  14.2x
  *** zstd    , bitshuffle ***  0.251 s (2.97 GB/s) / 0.047 s (15.84 GB/s)    Compr. ratio:  22.2x

*** the random distribution ***
  *** blosclz , noshuffle  ***  0.340 s (2.19 GB/s) / 0.285 s (2.61 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.091 s (8.21 GB/s) / 0.017 s (44.29 GB/s)    Compr. ratio:   3.9x
  *** blosclz , bitshuffle ***  0.080 s (9.27 GB/s) / 0.029 s (26.12 GB/s)    Compr. ratio:   6.1x
  *** lz4     , noshuffle  ***  0.150 s (4.95 GB/s) / 0.027 s (28.05 GB/s)    Compr. ratio:   2.4x
  *** lz4     , shuffle    ***  0.068 s (11.02 GB/s) / 0.029 s (26.03 GB/s)   Compr. ratio:   4.5x
  *** lz4     , bitshuffle ***  0.063 s (11.87 GB/s) / 0.054 s (13.70 GB/s)   Compr. ratio:   6.2x
  *** lz4hc   , noshuffle  ***  0.645 s (1.15 GB/s) / 0.019 s (39.22 GB/s)    Compr. ratio:   3.5x
  *** lz4hc   , shuffle    ***  0.257 s (2.90 GB/s) / 0.022 s (34.62 GB/s)    Compr. ratio:   5.1x
  *** lz4hc   , bitshuffle ***  0.128 s (5.80 GB/s) / 0.029 s (25.52 GB/s)    Compr. ratio:   6.2x
  *** snappy  , noshuffle  ***  0.164 s (4.54 GB/s) / 0.048 s (15.46 GB/s)    Compr. ratio:   2.2x
  *** snappy  , shuffle    ***  0.082 s (9.09 GB/s) / 0.043 s (17.39 GB/s)    Compr. ratio:   4.3x
  *** snappy  , bitshuffle ***  0.071 s (10.48 GB/s) / 0.046 s (16.08 GB/s)   Compr. ratio:   5.0x
  *** zlib    , noshuffle  ***  1.223 s (0.61 GB/s) / 0.093 s (7.97 GB/s)     Compr. ratio:   4.0x
  *** zlib    , shuffle    ***  0.636 s (1.17 GB/s) / 0.126 s (5.89 GB/s)     Compr. ratio:   5.5x
  *** zlib    , bitshuffle ***  0.327 s (2.28 GB/s) / 0.109 s (6.81 GB/s)     Compr. ratio:   6.2x
  *** zstd    , noshuffle  ***  1.432 s (0.52 GB/s) / 0.103 s (7.27 GB/s)     Compr. ratio:   4.2x
  *** zstd    , shuffle    ***  0.388 s (1.92 GB/s) / 0.031 s (23.71 GB/s)    Compr. ratio:   5.9x
  *** zstd    , bitshuffle ***  0.127 s (5.86 GB/s) / 0.033 s (22.77 GB/s)    Compr. ratio:   6.4x

Also, Blosc works quite well on ARM processors (even without NEON support yet):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.4.4
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.8
  Zstd: 1.1.2
Python version: 3.6.0 (default, Dec 31 2016, 21:20:16)
[GCC 4.9.2]
Platform: Linux-3.4.113-sun8i-armv7l (#50 SMP PREEMPT Mon Nov 14 08:41:55 CET 2016)
Linux dist: debian 9.0
Processor: not recognized
Byte-ordering: little
Detected cores: 4
Number of threads to use by default: 4
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
  *** ctypes.memmove() *** Time for memcpy():   0.015 s (93.57 MB/s)

Times for compressing/decompressing with clevel=5 and 4 threads

*** user input ***
  *** blosclz , noshuffle  ***  0.015 s (89.93 MB/s) / 0.010 s (138.32 MB/s)    Compr. ratio:   2.7x
  *** blosclz , shuffle    ***  0.023 s (60.25 MB/s) / 0.012 s (112.71 MB/s)    Compr. ratio:   2.3x
  *** blosclz , bitshuffle ***  0.018 s (77.63 MB/s) / 0.021 s (66.76 MB/s)     Compr. ratio:   7.3x
  *** lz4     , noshuffle  ***  0.008 s (177.14 MB/s) / 0.009 s (159.00 MB/s)   Compr. ratio:   3.6x
  *** lz4     , shuffle    ***  0.010 s (131.29 MB/s) / 0.012 s (117.69 MB/s)   Compr. ratio:   3.5x
  *** lz4     , bitshuffle ***  0.015 s (89.97 MB/s) / 0.022 s (63.62 MB/s)     Compr. ratio:   8.4x
  *** lz4hc   , noshuffle  ***  0.071 s (19.30 MB/s) / 0.007 s (186.64 MB/s)    Compr. ratio:   8.6x
  *** lz4hc   , shuffle    ***  0.079 s (17.30 MB/s) / 0.014 s (95.99 MB/s)     Compr. ratio:   6.2x
  *** lz4hc   , bitshuffle ***  0.062 s (22.23 MB/s) / 0.027 s (51.53 MB/s)     Compr. ratio:   9.7x
  *** snappy  , noshuffle  ***  0.008 s (173.87 MB/s) / 0.009 s (148.77 MB/s)   Compr. ratio:   4.4x
  *** snappy  , shuffle    ***  0.011 s (123.22 MB/s) / 0.016 s (85.16 MB/s)    Compr. ratio:   4.4x
  *** snappy  , bitshuffle ***  0.015 s (89.02 MB/s) / 0.021 s (64.87 MB/s)     Compr. ratio:   6.2x
  *** zlib    , noshuffle  ***  0.047 s (29.26 MB/s) / 0.011 s (121.83 MB/s)    Compr. ratio:  14.7x
  *** zlib    , shuffle    ***  0.080 s (17.20 MB/s) / 0.022 s (63.61 MB/s)     Compr. ratio:   9.4x
  *** zlib    , bitshuffle ***  0.059 s (23.50 MB/s) / 0.033 s (41.10 MB/s)     Compr. ratio:  10.5x
  *** zstd    , noshuffle  ***  0.113 s (12.21 MB/s) / 0.011 s (124.64 MB/s)    Compr. ratio:  15.6x
  *** zstd    , shuffle    ***  0.154 s (8.92 MB/s) / 0.026 s (52.56 MB/s)      Compr. ratio:   9.9x
  *** zstd    , bitshuffle ***  0.116 s (11.86 MB/s) / 0.036 s (38.40 MB/s)     Compr. ratio:  11.4x

For details on the ARM benchmark see: https://github.com/Blosc/python-blosc/issues/105

In case you find your own results interesting, please report them back to the authors!

License

The software is licenses under a 3-Clause BSD licsense. A copy of the python-blosc license can be found in LICENSE.txt. A copy of all licenses can be found in LICENSES/.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

http://groups.google.es/group/blosc


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc-1.10.4.tar.gz (858.1 kB view details)

Uploaded Source

Built Distributions

blosc-1.10.4-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc-1.10.4-cp39-cp39-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

blosc-1.10.4-cp39-cp39-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

blosc-1.10.4-cp39-cp39-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

blosc-1.10.4-cp39-cp39-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9

blosc-1.10.4-cp39-cp39-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.9

blosc-1.10.4-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc-1.10.4-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc-1.10.4-cp38-cp38-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

blosc-1.10.4-cp38-cp38-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

blosc-1.10.4-cp38-cp38-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

blosc-1.10.4-cp38-cp38-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8

blosc-1.10.4-cp38-cp38-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.8

blosc-1.10.4-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

blosc-1.10.4-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

blosc-1.10.4-cp37-cp37m-win32.whl (1.3 MB view details)

Uploaded CPython 3.7m Windows x86

blosc-1.10.4-cp37-cp37m-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

blosc-1.10.4-cp37-cp37m-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

blosc-1.10.4-cp37-cp37m-manylinux1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m

blosc-1.10.4-cp37-cp37m-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m

blosc-1.10.4-cp37-cp37m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file blosc-1.10.4.tar.gz.

File metadata

  • Download URL: blosc-1.10.4.tar.gz
  • Upload date:
  • Size: 858.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4.tar.gz
Algorithm Hash digest
SHA256 562e617eac025f4247fe5b18cfa7177672c796f4ceaafb35672f917cf6c9a937
MD5 accf438b68044bc57755a94a9b96d941
BLAKE2b-256 cbeec65e3c7b8ce52a3174c50d256e3072aca820bb48efe61348056bdfca7b95

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e16bcc050fc79cd487b6739770a0eafea9d10f1528cc4129e7a9a059cdac48b1
MD5 de6c7440baa668597e747b13abab4980
BLAKE2b-256 1ef7a2f3294b00eee9630c6e870761e802b045d39182c974cb5203a0d4b46b2e

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc-1.10.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c8dafa46cde0e117e7f238695f2ee7d32101131fc87863ee5f41fba5f25e3dc0
MD5 f89291646ab71387823fea96b987b7ec
BLAKE2b-256 63f3c8216fd6004bd733724be5aaf497a31259963064bed1f071f1f2673a2ad4

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.4-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e43c14914ae1267c63550500c64878a4ad3a696138b8c7f92ba14ee8425fefb7
MD5 f753e966f53743c0dc5d3c8db15ec297
BLAKE2b-256 bbba8135a21d4d23e0f027d7d3a04db0ef63c2a4b667031260c7f6a904a3ce00

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.10.4-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6977fb3ffc825958420c5e63f49bcdb7195c82942e12dbc1481e63119a2bbe5e
MD5 0c55659e221991dfa41311e0d64af26b
BLAKE2b-256 8bc26829533658d6b42b2ad8519aaec15c0abf3f418ed016f10db6350b2ce504

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.4-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 140bda212993809ca2144949a4b2cdc0bdc5f898f39beb2681eb1a12094f1112
MD5 facb02fa7071877f95fc496494f64242
BLAKE2b-256 dc757fe3e63d819f929cc14b786b95b2e952e5080cacbd0d47d8f9ec3159072b

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.4-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9495ba6e330fad6a0ea843087f8d33a48073cfc78637e7203f64fedeb2bedade
MD5 f4f8faec885e97e9375af65db87d9d2c
BLAKE2b-256 2c9dd1027ab15d4d9d189195468f78262d9a6f72dabe8d79af504fc666dced6c

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.4-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 29969e02098598609fa8067af7a6700b54b5601b8281bf4e80a37d5ae8f9f94c
MD5 e04bb5dcab7e90af571c3846bb34c314
BLAKE2b-256 96b2b4202784adb78e699676b1d25a55079f830203f845c7df7f8091070bf785

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 68228d871b8dabf63cdcb2c600da1a4c56d32988d0d179ec625f51dbffee1291
MD5 5b27b7929a21c6d566b440adab4fab6a
BLAKE2b-256 88e4d2147539bf27697728a9e23aaa9c92a481f05dc1018aa0b94ff02993a627

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: blosc-1.10.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 aa66e0b4fd68ce18e9f2bee47dbaf3828c47b2cdf140a19d4e2c9487b9e97258
MD5 3c4c30cd9659300ff2ecff69d6782b60
BLAKE2b-256 3541aac1057aed796c4fadbf1b935822e60cfdda5a0dcea7f87f38a12e9aec19

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.4-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6baaea68c4ec727fa1fa0611ece6ae3120fc6cfd5b4d1a686db55cc244927f9e
MD5 5b55046541da8ff8c641c44844a42487
BLAKE2b-256 7213d98361ad34396e1d7553f6361fab52dc4bdf030a8a7723f291b80ab98309

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.10.4-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3714142c54e0d44f57d337db43eac4bbd7e930cae9caf526ca0ab6e898c39e69
MD5 a60de3f67c2c893d599e8242c64fb41c
BLAKE2b-256 3a0974612047711f3860f97f956d97d8a86d2b9956a845dd891f472407d668d5

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.4-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 afbef8d37089c27a40e2cc1d391b7f940e6f921a17e09d356f4b77357539ee37
MD5 7725907f4765193f04d40d7949696ef1
BLAKE2b-256 70ebd8abbd92b0926b27bb06b64fe7aaa72019b44345a757ef1160b57d525326

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.4-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5c6540d39058ea180575aa773ee67f7e5b959032f59c4274e670e5a66dc4126a
MD5 d1cbb023e1326c7134a480ef50c790c5
BLAKE2b-256 016e813801364df0e7bbe76ce1705bcef163f663da1506415899563599e178d1

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.4-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c6c904550c32436b8e3401aebcf5bc52064db785f8729ee84c9bfa3c5dad75e
MD5 73887783f89d726d927e93410b31468b
BLAKE2b-256 7bfddc4d2ddb87aafc8cb3c71bc0e5e19c0b95fdd5271bf814ec1f594bcf25d8

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7f08b0e002d548fb3ab23ec506fe11615eca922ea18a7ef25cdb6b4cc9c4676e
MD5 8566a36390fa93cb685de55dd2d72e75
BLAKE2b-256 69eb34ae69bf65b6b2ecaed401e0be9788689423bc88c2800f9f1d88e05f4d9a

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: blosc-1.10.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 84b8a20be69295a40b72be0f7fbb297792535f713f5f1f44f1cd6d4372c84cc9
MD5 b737073be76409a290d2f4b672c42e13
BLAKE2b-256 024262bf703b8f344beefd555bf8ed80b945ac925488c845ff1c1bed231ee21e

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.4-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 188ce4bcbef976ad58947885b10fe906fc1f3edc83e2bae633e4cbe4d7422379
MD5 bfc89768b127c12928f512a2339d339f
BLAKE2b-256 c244eaa74161aa5ec300411d5aa6daafcf12a61665c36e8d0f92ad4ce515c455

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.10.4-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a1567b6fe7aa0ee9cff21d915fe89570ad62977595c91f1845edb888fd07c885
MD5 152d1395c025fe60a6093caf05053ffc
BLAKE2b-256 31c1f11ddf79b49550cc13d4b46ef2bdf16febd554a16a044769d7dcaaf604c0

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.4-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1ac01f03da32dff8800fddb530b5fcba50ac6e822e113b1dadc9561431316e48
MD5 4314ae92ac9309de8f8b5d62448415a7
BLAKE2b-256 983cc693ff6cca0b9c2f91a67a498cb2e152bebd67697f2ffdefd66248155317

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.10.4-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a8bd5d1f80d9246ec52d2bc538b834170c030522ea1785477fbada335da5d9e3
MD5 72ecb6089f52be774c846e503bb3d957
BLAKE2b-256 bc41fba004e0dddd303c63adeed2394514c694e9c3a5add5fc17e440cf52e283

See more details on using hashes here.

File details

Details for the file blosc-1.10.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.4-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for blosc-1.10.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c5264df46eb1a3643ca4950bb1047f0ed8f2ea053255d802f35d2ec7a9ac71aa
MD5 5d1f27cfce656a02184d5d80f42c5326
BLAKE2b-256 3a9c7fbf19a8adc7d7f092dce1041cdba365d40e2e3a03a1f88b93fdcad18e7f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page