Skip to main content

Blosc data compressor

Project description

python-blosc: a Python wrapper for the extremely fast Blosc compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc

URL:

http://python-blosc.blosc.org

PyPi:

version

Anaconda:

anaconda

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (http://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc a Python package that wraps Blosc. python-blosc supports Python 3.7 or higher versions.

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

$ pip install blosc

Documentation

The Sphinx based documentation is here:

http://python-blosc.blosc.org

Also, some examples are available on python-blosc wiki page:

http://github.com/blosc/python-blosc/wiki

Lastly, here is the recording and the slides from the talk “Compress me stupid” at the EuroPython 2014.

Building

If you need more control, there are different ways to compile python-blosc, depending if you want to link with an already installed Blosc library or not.

Installing via setuptools

python-blosc comes with the Blosc sources with it and can be built with:

$ python -m pip install -r requirements-dev.txt
$ python setup.py build --inplace

Any codec can be enabled (=1) or disabled (=0) on this build-path with the appropriate OS environment variables INCLUDE_LZ4, INCLUDE_SNAPPY, INCLUDE_ZLIB, and INCLUDE_ZLIB. By default all the codecs in Blosc are enabled except Snappy (due to some issues with C++ with the gcc toolchain).

Compiler specific optimisations are automatically enabled by inspecting the CPU flags building Blosc. They can be manually disabled by setting the following environmental variables: DISABLE_BLOSC_SSE2 and DISABLE_BLOSC_AVX2.

setuptools is limited to using the compiler specified in the environment variable CC which on posix systems is usually gcc. This often causes trouble with the Snappy codec, which is written in C++, and as a result Snappy is no longer compiled by default. This problem is not known to affect MSVC or clang. Snappy is considered optional in Blosc as its compression performance is below that of the other codecs.

That’s all. You can proceed with testing section now.

Compiling with an installed Blosc library

This approach uses pre-built, fully optimized versions of Blosc built via CMake.

Go to https://github.com/Blosc/c-blosc/releases and download and install the C-Blosc library. Then, you can tell python-blosc where is the C-Blosc library in a couple of ways:

Using an environment variable:

$ export USE_SYSTEM_BLOSC=1                 # or "set USE_SYSTEM_BLOSC=1" on Windows
$ export Blosc_ROOT=/usr/local/customprefix # If you installed Blosc into a custom location
$ python setup.py build --inplace

Using flags:

$ python setup.py build --inplace -DUSE_SYSTEM_BLOSC:BOOL=YES -DBlosc_ROOT:PATH=/usr/local/customprefix

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

$ PYTHONPATH=.   (or "set PYTHONPATH=." on Win)
$ export PYTHONPATH=.  (not needed on Win)
$ python blosc/test.py  (add -v for verbose mode)

Or alternatively, you can use the third-party nosetests script:

$ nosetests --with-doctest (add -v for verbose mode)

Once installed, you can re-run the tests at any time with:

$ python -c "import blosc; blosc.test()"

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

$ PYTHONPATH=. python bench/compress_ptr.py

Just to whet your appetite, here are the results for an Intel Xeon E5-2695 v3 @ 2.30GHz, running Python 3.5, CentOS 7, but YMMV (and will vary!):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.5.1.dev0
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.7
  Zstd: 1.1.2
Python version: 3.5.2 |Continuum Analytics, Inc.| (default, Jul  2 2016, 17:53:06)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
Platform: Linux-3.10.0-327.18.2.el7.x86_64-x86_64 (#1 SMP Thu May 12 11:03:55 UTC 2016)
Linux dist: CentOS Linux 7.2.1511
Processor: x86_64
Byte-ordering: little
Detected cores: 56
Number of threads to use by default: 4
  -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** ctypes.memmove() *** Time for memcpy(): 0.276 s (2.70 GB/s)

Times for compressing/decompressing with clevel=5 and 24 threads

*** the arange linear distribution ***
  *** blosclz , noshuffle  ***  0.382 s (1.95 GB/s) / 0.300 s (2.48 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.042 s (17.77 GB/s) / 0.027 s (27.18 GB/s)   Compr. ratio:  57.1x
  *** blosclz , bitshuffle ***  0.094 s (7.94 GB/s) / 0.041 s (18.28 GB/s)    Compr. ratio:  74.0x
  *** lz4     , noshuffle  ***  0.156 s (4.79 GB/s) / 0.052 s (14.30 GB/s)    Compr. ratio:   2.0x
  *** lz4     , shuffle    ***  0.033 s (22.58 GB/s) / 0.034 s (22.03 GB/s)   Compr. ratio:  68.6x
  *** lz4     , bitshuffle ***  0.059 s (12.63 GB/s) / 0.053 s (14.18 GB/s)   Compr. ratio:  33.1x
  *** lz4hc   , noshuffle  ***  0.443 s (1.68 GB/s) / 0.070 s (10.62 GB/s)    Compr. ratio:   2.0x
  *** lz4hc   , shuffle    ***  0.102 s (7.31 GB/s) / 0.029 s (25.42 GB/s)    Compr. ratio:  97.5x
  *** lz4hc   , bitshuffle ***  0.206 s (3.62 GB/s) / 0.038 s (19.85 GB/s)    Compr. ratio: 180.5x
  *** snappy  , noshuffle  ***  0.154 s (4.84 GB/s) / 0.056 s (13.28 GB/s)    Compr. ratio:   2.0x
  *** snappy  , shuffle    ***  0.044 s (16.89 GB/s) / 0.047 s (15.95 GB/s)   Compr. ratio:  17.4x
  *** snappy  , bitshuffle ***  0.064 s (11.58 GB/s) / 0.061 s (12.26 GB/s)   Compr. ratio:  18.2x
  *** zlib    , noshuffle  ***  1.172 s (0.64 GB/s) / 0.135 s (5.50 GB/s)     Compr. ratio:   5.3x
  *** zlib    , shuffle    ***  0.260 s (2.86 GB/s) / 0.086 s (8.67 GB/s)     Compr. ratio: 120.8x
  *** zlib    , bitshuffle ***  0.262 s (2.84 GB/s) / 0.094 s (7.96 GB/s)     Compr. ratio: 260.1x
  *** zstd    , noshuffle  ***  0.973 s (0.77 GB/s) / 0.093 s (8.00 GB/s)     Compr. ratio:   7.8x
  *** zstd    , shuffle    ***  0.093 s (7.97 GB/s) / 0.023 s (32.71 GB/s)    Compr. ratio: 156.7x
  *** zstd    , bitshuffle ***  0.115 s (6.46 GB/s) / 0.029 s (25.60 GB/s)    Compr. ratio: 320.6x

*** the linspace linear distribution ***
  *** blosclz , noshuffle  ***  0.341 s (2.19 GB/s) / 0.291 s (2.56 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.132 s (5.65 GB/s) / 0.023 s (33.10 GB/s)    Compr. ratio:   2.0x
  *** blosclz , bitshuffle ***  0.166 s (4.50 GB/s) / 0.036 s (20.89 GB/s)    Compr. ratio:   2.8x
  *** lz4     , noshuffle  ***  0.142 s (5.26 GB/s) / 0.028 s (27.07 GB/s)    Compr. ratio:   1.0x
  *** lz4     , shuffle    ***  0.093 s (8.01 GB/s) / 0.030 s (24.87 GB/s)    Compr. ratio:   3.4x
  *** lz4     , bitshuffle ***  0.102 s (7.31 GB/s) / 0.039 s (19.13 GB/s)    Compr. ratio:   5.3x
  *** lz4hc   , noshuffle  ***  0.700 s (1.06 GB/s) / 0.044 s (16.77 GB/s)    Compr. ratio:   1.1x
  *** lz4hc   , shuffle    ***  0.203 s (3.67 GB/s) / 0.021 s (36.22 GB/s)    Compr. ratio:   8.6x
  *** lz4hc   , bitshuffle ***  0.342 s (2.18 GB/s) / 0.028 s (26.50 GB/s)    Compr. ratio:  14.2x
  *** snappy  , noshuffle  ***  0.271 s (2.75 GB/s) / 0.274 s (2.72 GB/s)     Compr. ratio:   1.0x
  *** snappy  , shuffle    ***  0.099 s (7.54 GB/s) / 0.042 s (17.55 GB/s)    Compr. ratio:   4.2x
  *** snappy  , bitshuffle ***  0.127 s (5.86 GB/s) / 0.043 s (17.20 GB/s)    Compr. ratio:   6.1x
  *** zlib    , noshuffle  ***  1.525 s (0.49 GB/s) / 0.158 s (4.70 GB/s)     Compr. ratio:   1.6x
  *** zlib    , shuffle    ***  0.346 s (2.15 GB/s) / 0.098 s (7.59 GB/s)     Compr. ratio:  10.7x
  *** zlib    , bitshuffle ***  0.420 s (1.78 GB/s) / 0.104 s (7.20 GB/s)     Compr. ratio:  18.0x
  *** zstd    , noshuffle  ***  1.061 s (0.70 GB/s) / 0.096 s (7.79 GB/s)     Compr. ratio:   1.9x
  *** zstd    , shuffle    ***  0.203 s (3.68 GB/s) / 0.052 s (14.21 GB/s)    Compr. ratio:  14.2x
  *** zstd    , bitshuffle ***  0.251 s (2.97 GB/s) / 0.047 s (15.84 GB/s)    Compr. ratio:  22.2x

*** the random distribution ***
  *** blosclz , noshuffle  ***  0.340 s (2.19 GB/s) / 0.285 s (2.61 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.091 s (8.21 GB/s) / 0.017 s (44.29 GB/s)    Compr. ratio:   3.9x
  *** blosclz , bitshuffle ***  0.080 s (9.27 GB/s) / 0.029 s (26.12 GB/s)    Compr. ratio:   6.1x
  *** lz4     , noshuffle  ***  0.150 s (4.95 GB/s) / 0.027 s (28.05 GB/s)    Compr. ratio:   2.4x
  *** lz4     , shuffle    ***  0.068 s (11.02 GB/s) / 0.029 s (26.03 GB/s)   Compr. ratio:   4.5x
  *** lz4     , bitshuffle ***  0.063 s (11.87 GB/s) / 0.054 s (13.70 GB/s)   Compr. ratio:   6.2x
  *** lz4hc   , noshuffle  ***  0.645 s (1.15 GB/s) / 0.019 s (39.22 GB/s)    Compr. ratio:   3.5x
  *** lz4hc   , shuffle    ***  0.257 s (2.90 GB/s) / 0.022 s (34.62 GB/s)    Compr. ratio:   5.1x
  *** lz4hc   , bitshuffle ***  0.128 s (5.80 GB/s) / 0.029 s (25.52 GB/s)    Compr. ratio:   6.2x
  *** snappy  , noshuffle  ***  0.164 s (4.54 GB/s) / 0.048 s (15.46 GB/s)    Compr. ratio:   2.2x
  *** snappy  , shuffle    ***  0.082 s (9.09 GB/s) / 0.043 s (17.39 GB/s)    Compr. ratio:   4.3x
  *** snappy  , bitshuffle ***  0.071 s (10.48 GB/s) / 0.046 s (16.08 GB/s)   Compr. ratio:   5.0x
  *** zlib    , noshuffle  ***  1.223 s (0.61 GB/s) / 0.093 s (7.97 GB/s)     Compr. ratio:   4.0x
  *** zlib    , shuffle    ***  0.636 s (1.17 GB/s) / 0.126 s (5.89 GB/s)     Compr. ratio:   5.5x
  *** zlib    , bitshuffle ***  0.327 s (2.28 GB/s) / 0.109 s (6.81 GB/s)     Compr. ratio:   6.2x
  *** zstd    , noshuffle  ***  1.432 s (0.52 GB/s) / 0.103 s (7.27 GB/s)     Compr. ratio:   4.2x
  *** zstd    , shuffle    ***  0.388 s (1.92 GB/s) / 0.031 s (23.71 GB/s)    Compr. ratio:   5.9x
  *** zstd    , bitshuffle ***  0.127 s (5.86 GB/s) / 0.033 s (22.77 GB/s)    Compr. ratio:   6.4x

Also, Blosc works quite well on ARM processors (even without NEON support yet):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.4.4
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.8
  Zstd: 1.1.2
Python version: 3.6.0 (default, Dec 31 2016, 21:20:16)
[GCC 4.9.2]
Platform: Linux-3.4.113-sun8i-armv7l (#50 SMP PREEMPT Mon Nov 14 08:41:55 CET 2016)
Linux dist: debian 9.0
Processor: not recognized
Byte-ordering: little
Detected cores: 4
Number of threads to use by default: 4
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
  *** ctypes.memmove() *** Time for memcpy():   0.015 s (93.57 MB/s)

Times for compressing/decompressing with clevel=5 and 4 threads

*** user input ***
  *** blosclz , noshuffle  ***  0.015 s (89.93 MB/s) / 0.010 s (138.32 MB/s)    Compr. ratio:   2.7x
  *** blosclz , shuffle    ***  0.023 s (60.25 MB/s) / 0.012 s (112.71 MB/s)    Compr. ratio:   2.3x
  *** blosclz , bitshuffle ***  0.018 s (77.63 MB/s) / 0.021 s (66.76 MB/s)     Compr. ratio:   7.3x
  *** lz4     , noshuffle  ***  0.008 s (177.14 MB/s) / 0.009 s (159.00 MB/s)   Compr. ratio:   3.6x
  *** lz4     , shuffle    ***  0.010 s (131.29 MB/s) / 0.012 s (117.69 MB/s)   Compr. ratio:   3.5x
  *** lz4     , bitshuffle ***  0.015 s (89.97 MB/s) / 0.022 s (63.62 MB/s)     Compr. ratio:   8.4x
  *** lz4hc   , noshuffle  ***  0.071 s (19.30 MB/s) / 0.007 s (186.64 MB/s)    Compr. ratio:   8.6x
  *** lz4hc   , shuffle    ***  0.079 s (17.30 MB/s) / 0.014 s (95.99 MB/s)     Compr. ratio:   6.2x
  *** lz4hc   , bitshuffle ***  0.062 s (22.23 MB/s) / 0.027 s (51.53 MB/s)     Compr. ratio:   9.7x
  *** snappy  , noshuffle  ***  0.008 s (173.87 MB/s) / 0.009 s (148.77 MB/s)   Compr. ratio:   4.4x
  *** snappy  , shuffle    ***  0.011 s (123.22 MB/s) / 0.016 s (85.16 MB/s)    Compr. ratio:   4.4x
  *** snappy  , bitshuffle ***  0.015 s (89.02 MB/s) / 0.021 s (64.87 MB/s)     Compr. ratio:   6.2x
  *** zlib    , noshuffle  ***  0.047 s (29.26 MB/s) / 0.011 s (121.83 MB/s)    Compr. ratio:  14.7x
  *** zlib    , shuffle    ***  0.080 s (17.20 MB/s) / 0.022 s (63.61 MB/s)     Compr. ratio:   9.4x
  *** zlib    , bitshuffle ***  0.059 s (23.50 MB/s) / 0.033 s (41.10 MB/s)     Compr. ratio:  10.5x
  *** zstd    , noshuffle  ***  0.113 s (12.21 MB/s) / 0.011 s (124.64 MB/s)    Compr. ratio:  15.6x
  *** zstd    , shuffle    ***  0.154 s (8.92 MB/s) / 0.026 s (52.56 MB/s)      Compr. ratio:   9.9x
  *** zstd    , bitshuffle ***  0.116 s (11.86 MB/s) / 0.036 s (38.40 MB/s)     Compr. ratio:  11.4x

For details on the ARM benchmark see: https://github.com/Blosc/python-blosc/issues/105

In case you find your own results interesting, please report them back to the authors!

License

The software is licenses under a 3-Clause BSD licsense. A copy of the python-blosc license can be found in LICENSE.txt. A copy of all licenses can be found in LICENSES/.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

http://groups.google.es/group/blosc


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc-1.10.6.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

blosc-1.10.6-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc-1.10.6-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

blosc-1.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc-1.10.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

blosc-1.10.6-cp39-cp39-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc-1.10.6-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc-1.10.6-cp38-cp38-win32.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86

blosc-1.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

blosc-1.10.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

blosc-1.10.6-cp38-cp38-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

blosc-1.10.6-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

blosc-1.10.6-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

blosc-1.10.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

blosc-1.10.6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

blosc-1.10.6-cp37-cp37m-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file blosc-1.10.6.tar.gz.

File metadata

  • Download URL: blosc-1.10.6.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for blosc-1.10.6.tar.gz
Algorithm Hash digest
SHA256 55d9d57b85d6eeec010c6c399f2820f96f566dccbc6ddfeefb60501f8e10b548
MD5 560ac57ccae6a5d7605596fa7408c7b7
BLAKE2b-256 8457c1f93e05a21a9f234fbba963d25337fc86d1e096544825603d10d22946ac

See more details on using hashes here.

File details

Details for the file blosc-1.10.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for blosc-1.10.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4d166c0ef9363c6ff5d163b81b2089103d8012651520487408bea49eb664f9ce
MD5 6be8337f01c91f12c70f9703b7c16240
BLAKE2b-256 c7d36cbae1cb84b98b0f1d38b0ba802c025e05e9e296733bf1a08cbfbe314b42

See more details on using hashes here.

File details

Details for the file blosc-1.10.6-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc-1.10.6-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for blosc-1.10.6-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d9a9ec1eda375b35ab64c0f9b9295e8219b29fbaf8646d1f54251102411544db
MD5 3b64a3590488e1e67b5ffb23bfaf2ad3
BLAKE2b-256 191f89594f23c58263674a970c89b7fffc9b4f0024bd8bba3be7ec2a608d53a2

See more details on using hashes here.

File details

Details for the file blosc-1.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b1d8c9779625cc001ea35d893da769f155d38a67b052797eb4cab11147886533
MD5 25e072989f24185b0bf4a1a781cf0821
BLAKE2b-256 6e4c6122e72179516c9ba6be6e9be09a6a9e94bf666cb2f53ae45657941f98bf

See more details on using hashes here.

File details

Details for the file blosc-1.10.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.10.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1c11cf9b9915ca43a8a8557f3412f974051510712790a170b46fa481581e07fe
MD5 10d57ce64cefb31f11255b4c9e59a246
BLAKE2b-256 edff02010309454b736b0d725da27f3c2e545067f01ca48a2fcc79d953dda3be

See more details on using hashes here.

File details

Details for the file blosc-1.10.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.6-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for blosc-1.10.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3260832994f10ecde7f2c1b27ed6c9e2581b8584ea60554ab35b436153af7556
MD5 904665a974b86aea00a0484847d914a0
BLAKE2b-256 bc5a1884d1014a33c459739308d3915696b24d5a811af4743527c80cdba2dd1b

See more details on using hashes here.

File details

Details for the file blosc-1.10.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for blosc-1.10.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 67e5c9be04de7cfc64be6a3385ea1da7228eb25b84a5cc6f1d16e53319ec8d2a
MD5 a5655a5a0c0e3dad57a93aeda32334d8
BLAKE2b-256 6249dd5f07e696c09e5ef500206d59ee362a4f10148b75a05f40f149f470ed58

See more details on using hashes here.

File details

Details for the file blosc-1.10.6-cp38-cp38-win32.whl.

File metadata

  • Download URL: blosc-1.10.6-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for blosc-1.10.6-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 fb135356ab39bb7222b214958f2c6794c65801ecfe45a52116adc23e1d956b4c
MD5 f1081ba274ee7126c2e8cb5507430e5e
BLAKE2b-256 cebe7941cf44fb0491d7fe3f2760f5ef008ac6130ea6b9207485bc5e22e6a7b6

See more details on using hashes here.

File details

Details for the file blosc-1.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0ce3f50b357f65f24d47ef5ff0265426dd149a3916d0feb061fa9e9b12af4a19
MD5 8e4b0b2ea4fbfe7fa93970cd1aca73dc
BLAKE2b-256 df52309eb09b20556edb3b16be3caecaa4de93d16b6d6803a48a821fa927fc3f

See more details on using hashes here.

File details

Details for the file blosc-1.10.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.10.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b30326c84b745e307ed35766a231572cc66b65a2e15a06acf9a68ec946043224
MD5 c69f7f7c9c1ea4a9b5f2c83f824925b1
BLAKE2b-256 d96f20d695ddd5514bce05e3faa8eed6e04064c414f8a86c797f722a2a680cd3

See more details on using hashes here.

File details

Details for the file blosc-1.10.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.6-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for blosc-1.10.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 094ea5de87e2765868a87c5c03daa88297bda2e6d6b9fe1ed42e87f9d5c2335e
MD5 8034effbac6293332769d9ad15fcb865
BLAKE2b-256 3d9f406a06e88fc77779f8a392348eaa691a28b4dbdc7af4176f187fcbf69fe2

See more details on using hashes here.

File details

Details for the file blosc-1.10.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: blosc-1.10.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for blosc-1.10.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2874ac08785913818dd4fc6ee59ed456b732f5b14a1ca12093a1eafcbff039b7
MD5 6a14d5be37b997d797f0524974c0774d
BLAKE2b-256 57551abe8dead16ffa5dd2f9ccd95ea6625bab2b7f9fb77c7df27a55b2ed3275

See more details on using hashes here.

File details

Details for the file blosc-1.10.6-cp37-cp37m-win32.whl.

File metadata

  • Download URL: blosc-1.10.6-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for blosc-1.10.6-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4c7af607edfd2f56916f78346ae1e49b016d470f0675bed1d5292ef7c324a181
MD5 3fd208770fe334cb6e76e5af2b03fbb5
BLAKE2b-256 61d8caf250a94a381769085de9fbf9235b373c6f48052f5292aeae8969d80e3a

See more details on using hashes here.

File details

Details for the file blosc-1.10.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.10.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 daa06af88b5264bab13659bfb4dd84dedf3541b4972cf0ce4a3c957e4a40ce41
MD5 79d60c928b08a0be58c9290a8c348c0f
BLAKE2b-256 501a5ee7ec1fcb3a6827faafcf14218ef4848628715b3f6e0eddc5248495041c

See more details on using hashes here.

File details

Details for the file blosc-1.10.6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.10.6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cfe447f6b8778ec5140f7671a283c396b15a269188ee3697f932c66abfbc26d1
MD5 7b2631a0babb13f83b98a89ff1e2ebb1
BLAKE2b-256 a395b95b0c624e19dba87c515068376d2863b21abe9522513794c0a269ad039a

See more details on using hashes here.

File details

Details for the file blosc-1.10.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.10.6-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for blosc-1.10.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cab567bcda075dde74ec80c406a48d36d8fc886ac8a989bb58cc9f7cb60ec6bf
MD5 bef4b48fbcd819e22f3c3c5dbf05f1ee
BLAKE2b-256 8668dad47dbefb202666e34ba9e1a641467717559da84415048991ddcf84fdb9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page