Skip to main content

Blosc data compressor

Project description

A Python wrapper for the extremely fast Blosc compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc

URL:

https://www.blosc.org/python-blosc/python-blosc.html

PyPi:

version

Anaconda:

anaconda

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (http://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc a Python package that wraps Blosc. python-blosc supports Python 3.8 or higher versions.

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

$ pip install blosc

Documentation

The Sphinx based documentation is here:

https://blosc.org/python-blosc/python-blosc.html

Also, some examples are available on python-blosc wiki page:

https://github.com/blosc/python-blosc/wiki

Lastly, here is the recording and the slides from the talk “Compress me stupid” at the EuroPython 2014.

Building

If you need more control, there are different ways to compile python-blosc, depending if you want to link with an already installed Blosc library or not.

Installing via setuptools

python-blosc comes with the Blosc sources with it and can be built with:

$ python -m pip install -r requirements-dev.txt
$ python setup.py build_ext --inplace

Any codec can be enabled (=1) or disabled (=0) on this build-path with the appropriate OS environment variables INCLUDE_LZ4, INCLUDE_SNAPPY, INCLUDE_ZLIB, and INCLUDE_ZSTD. By default all the codecs in Blosc are enabled except Snappy (due to some issues with C++ with the gcc toolchain).

Compiler specific optimisations are automatically enabled by inspecting the CPU flags building Blosc. They can be manually disabled by setting the following environmental variables: DISABLE_BLOSC_SSE2 and DISABLE_BLOSC_AVX2.

setuptools is limited to using the compiler specified in the environment variable CC which on posix systems is usually gcc. This often causes trouble with the Snappy codec, which is written in C++, and as a result Snappy is no longer compiled by default. This problem is not known to affect MSVC or clang. Snappy is considered optional in Blosc as its compression performance is below that of the other codecs.

That’s all. You can proceed with testing section now.

Compiling with an installed Blosc library

This approach uses pre-built, fully optimized versions of Blosc built via CMake.

Go to https://github.com/Blosc/c-blosc/releases and download and install the C-Blosc library. Then, you can tell python-blosc where is the C-Blosc library in a couple of ways:

Using an environment variable:

$ export USE_SYSTEM_BLOSC=1                 # or "set USE_SYSTEM_BLOSC=1" on Windows
$ export Blosc_ROOT=/usr/local/customprefix # If you installed Blosc into a custom location
$ python setup.py build_ext --inplace

Using flags:

$ python setup.py build_ext --inplace -DUSE_SYSTEM_BLOSC:BOOL=YES -DBlosc_ROOT:PATH=/usr/local/customprefix

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

$ python -m blosc.test  (add -v for verbose mode)

Once installed, you can re-run the tests at any time with:

$ python -c "import blosc; blosc.test()"

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

$ PYTHONPATH=. python bench/compress_ptr.py

Just to whet your appetite, here are the results for an Intel Xeon E5-2695 v3 @ 2.30GHz, running Python 3.5, CentOS 7, but YMMV (and will vary!):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.5.1.dev0
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.7
  Zstd: 1.1.2
Python version: 3.5.2 |Continuum Analytics, Inc.| (default, Jul  2 2016, 17:53:06)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
Platform: Linux-3.10.0-327.18.2.el7.x86_64-x86_64 (#1 SMP Thu May 12 11:03:55 UTC 2016)
Linux dist: CentOS Linux 7.2.1511
Processor: x86_64
Byte-ordering: little
Detected cores: 56
Number of threads to use by default: 4
  -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** ctypes.memmove() *** Time for memcpy(): 0.276 s (2.70 GB/s)

Times for compressing/decompressing with clevel=5 and 24 threads

*** the arange linear distribution ***
  *** blosclz , noshuffle  ***  0.382 s (1.95 GB/s) / 0.300 s (2.48 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.042 s (17.77 GB/s) / 0.027 s (27.18 GB/s)   Compr. ratio:  57.1x
  *** blosclz , bitshuffle ***  0.094 s (7.94 GB/s) / 0.041 s (18.28 GB/s)    Compr. ratio:  74.0x
  *** lz4     , noshuffle  ***  0.156 s (4.79 GB/s) / 0.052 s (14.30 GB/s)    Compr. ratio:   2.0x
  *** lz4     , shuffle    ***  0.033 s (22.58 GB/s) / 0.034 s (22.03 GB/s)   Compr. ratio:  68.6x
  *** lz4     , bitshuffle ***  0.059 s (12.63 GB/s) / 0.053 s (14.18 GB/s)   Compr. ratio:  33.1x
  *** lz4hc   , noshuffle  ***  0.443 s (1.68 GB/s) / 0.070 s (10.62 GB/s)    Compr. ratio:   2.0x
  *** lz4hc   , shuffle    ***  0.102 s (7.31 GB/s) / 0.029 s (25.42 GB/s)    Compr. ratio:  97.5x
  *** lz4hc   , bitshuffle ***  0.206 s (3.62 GB/s) / 0.038 s (19.85 GB/s)    Compr. ratio: 180.5x
  *** snappy  , noshuffle  ***  0.154 s (4.84 GB/s) / 0.056 s (13.28 GB/s)    Compr. ratio:   2.0x
  *** snappy  , shuffle    ***  0.044 s (16.89 GB/s) / 0.047 s (15.95 GB/s)   Compr. ratio:  17.4x
  *** snappy  , bitshuffle ***  0.064 s (11.58 GB/s) / 0.061 s (12.26 GB/s)   Compr. ratio:  18.2x
  *** zlib    , noshuffle  ***  1.172 s (0.64 GB/s) / 0.135 s (5.50 GB/s)     Compr. ratio:   5.3x
  *** zlib    , shuffle    ***  0.260 s (2.86 GB/s) / 0.086 s (8.67 GB/s)     Compr. ratio: 120.8x
  *** zlib    , bitshuffle ***  0.262 s (2.84 GB/s) / 0.094 s (7.96 GB/s)     Compr. ratio: 260.1x
  *** zstd    , noshuffle  ***  0.973 s (0.77 GB/s) / 0.093 s (8.00 GB/s)     Compr. ratio:   7.8x
  *** zstd    , shuffle    ***  0.093 s (7.97 GB/s) / 0.023 s (32.71 GB/s)    Compr. ratio: 156.7x
  *** zstd    , bitshuffle ***  0.115 s (6.46 GB/s) / 0.029 s (25.60 GB/s)    Compr. ratio: 320.6x

*** the linspace linear distribution ***
  *** blosclz , noshuffle  ***  0.341 s (2.19 GB/s) / 0.291 s (2.56 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.132 s (5.65 GB/s) / 0.023 s (33.10 GB/s)    Compr. ratio:   2.0x
  *** blosclz , bitshuffle ***  0.166 s (4.50 GB/s) / 0.036 s (20.89 GB/s)    Compr. ratio:   2.8x
  *** lz4     , noshuffle  ***  0.142 s (5.26 GB/s) / 0.028 s (27.07 GB/s)    Compr. ratio:   1.0x
  *** lz4     , shuffle    ***  0.093 s (8.01 GB/s) / 0.030 s (24.87 GB/s)    Compr. ratio:   3.4x
  *** lz4     , bitshuffle ***  0.102 s (7.31 GB/s) / 0.039 s (19.13 GB/s)    Compr. ratio:   5.3x
  *** lz4hc   , noshuffle  ***  0.700 s (1.06 GB/s) / 0.044 s (16.77 GB/s)    Compr. ratio:   1.1x
  *** lz4hc   , shuffle    ***  0.203 s (3.67 GB/s) / 0.021 s (36.22 GB/s)    Compr. ratio:   8.6x
  *** lz4hc   , bitshuffle ***  0.342 s (2.18 GB/s) / 0.028 s (26.50 GB/s)    Compr. ratio:  14.2x
  *** snappy  , noshuffle  ***  0.271 s (2.75 GB/s) / 0.274 s (2.72 GB/s)     Compr. ratio:   1.0x
  *** snappy  , shuffle    ***  0.099 s (7.54 GB/s) / 0.042 s (17.55 GB/s)    Compr. ratio:   4.2x
  *** snappy  , bitshuffle ***  0.127 s (5.86 GB/s) / 0.043 s (17.20 GB/s)    Compr. ratio:   6.1x
  *** zlib    , noshuffle  ***  1.525 s (0.49 GB/s) / 0.158 s (4.70 GB/s)     Compr. ratio:   1.6x
  *** zlib    , shuffle    ***  0.346 s (2.15 GB/s) / 0.098 s (7.59 GB/s)     Compr. ratio:  10.7x
  *** zlib    , bitshuffle ***  0.420 s (1.78 GB/s) / 0.104 s (7.20 GB/s)     Compr. ratio:  18.0x
  *** zstd    , noshuffle  ***  1.061 s (0.70 GB/s) / 0.096 s (7.79 GB/s)     Compr. ratio:   1.9x
  *** zstd    , shuffle    ***  0.203 s (3.68 GB/s) / 0.052 s (14.21 GB/s)    Compr. ratio:  14.2x
  *** zstd    , bitshuffle ***  0.251 s (2.97 GB/s) / 0.047 s (15.84 GB/s)    Compr. ratio:  22.2x

*** the random distribution ***
  *** blosclz , noshuffle  ***  0.340 s (2.19 GB/s) / 0.285 s (2.61 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.091 s (8.21 GB/s) / 0.017 s (44.29 GB/s)    Compr. ratio:   3.9x
  *** blosclz , bitshuffle ***  0.080 s (9.27 GB/s) / 0.029 s (26.12 GB/s)    Compr. ratio:   6.1x
  *** lz4     , noshuffle  ***  0.150 s (4.95 GB/s) / 0.027 s (28.05 GB/s)    Compr. ratio:   2.4x
  *** lz4     , shuffle    ***  0.068 s (11.02 GB/s) / 0.029 s (26.03 GB/s)   Compr. ratio:   4.5x
  *** lz4     , bitshuffle ***  0.063 s (11.87 GB/s) / 0.054 s (13.70 GB/s)   Compr. ratio:   6.2x
  *** lz4hc   , noshuffle  ***  0.645 s (1.15 GB/s) / 0.019 s (39.22 GB/s)    Compr. ratio:   3.5x
  *** lz4hc   , shuffle    ***  0.257 s (2.90 GB/s) / 0.022 s (34.62 GB/s)    Compr. ratio:   5.1x
  *** lz4hc   , bitshuffle ***  0.128 s (5.80 GB/s) / 0.029 s (25.52 GB/s)    Compr. ratio:   6.2x
  *** snappy  , noshuffle  ***  0.164 s (4.54 GB/s) / 0.048 s (15.46 GB/s)    Compr. ratio:   2.2x
  *** snappy  , shuffle    ***  0.082 s (9.09 GB/s) / 0.043 s (17.39 GB/s)    Compr. ratio:   4.3x
  *** snappy  , bitshuffle ***  0.071 s (10.48 GB/s) / 0.046 s (16.08 GB/s)   Compr. ratio:   5.0x
  *** zlib    , noshuffle  ***  1.223 s (0.61 GB/s) / 0.093 s (7.97 GB/s)     Compr. ratio:   4.0x
  *** zlib    , shuffle    ***  0.636 s (1.17 GB/s) / 0.126 s (5.89 GB/s)     Compr. ratio:   5.5x
  *** zlib    , bitshuffle ***  0.327 s (2.28 GB/s) / 0.109 s (6.81 GB/s)     Compr. ratio:   6.2x
  *** zstd    , noshuffle  ***  1.432 s (0.52 GB/s) / 0.103 s (7.27 GB/s)     Compr. ratio:   4.2x
  *** zstd    , shuffle    ***  0.388 s (1.92 GB/s) / 0.031 s (23.71 GB/s)    Compr. ratio:   5.9x
  *** zstd    , bitshuffle ***  0.127 s (5.86 GB/s) / 0.033 s (22.77 GB/s)    Compr. ratio:   6.4x

Also, Blosc works quite well on ARM processors (even without NEON support yet):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.4.4
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.8
  Zstd: 1.1.2
Python version: 3.6.0 (default, Dec 31 2016, 21:20:16)
[GCC 4.9.2]
Platform: Linux-3.4.113-sun8i-armv7l (#50 SMP PREEMPT Mon Nov 14 08:41:55 CET 2016)
Linux dist: debian 9.0
Processor: not recognized
Byte-ordering: little
Detected cores: 4
Number of threads to use by default: 4
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
  *** ctypes.memmove() *** Time for memcpy():   0.015 s (93.57 MB/s)

Times for compressing/decompressing with clevel=5 and 4 threads

*** user input ***
  *** blosclz , noshuffle  ***  0.015 s (89.93 MB/s) / 0.010 s (138.32 MB/s)    Compr. ratio:   2.7x
  *** blosclz , shuffle    ***  0.023 s (60.25 MB/s) / 0.012 s (112.71 MB/s)    Compr. ratio:   2.3x
  *** blosclz , bitshuffle ***  0.018 s (77.63 MB/s) / 0.021 s (66.76 MB/s)     Compr. ratio:   7.3x
  *** lz4     , noshuffle  ***  0.008 s (177.14 MB/s) / 0.009 s (159.00 MB/s)   Compr. ratio:   3.6x
  *** lz4     , shuffle    ***  0.010 s (131.29 MB/s) / 0.012 s (117.69 MB/s)   Compr. ratio:   3.5x
  *** lz4     , bitshuffle ***  0.015 s (89.97 MB/s) / 0.022 s (63.62 MB/s)     Compr. ratio:   8.4x
  *** lz4hc   , noshuffle  ***  0.071 s (19.30 MB/s) / 0.007 s (186.64 MB/s)    Compr. ratio:   8.6x
  *** lz4hc   , shuffle    ***  0.079 s (17.30 MB/s) / 0.014 s (95.99 MB/s)     Compr. ratio:   6.2x
  *** lz4hc   , bitshuffle ***  0.062 s (22.23 MB/s) / 0.027 s (51.53 MB/s)     Compr. ratio:   9.7x
  *** snappy  , noshuffle  ***  0.008 s (173.87 MB/s) / 0.009 s (148.77 MB/s)   Compr. ratio:   4.4x
  *** snappy  , shuffle    ***  0.011 s (123.22 MB/s) / 0.016 s (85.16 MB/s)    Compr. ratio:   4.4x
  *** snappy  , bitshuffle ***  0.015 s (89.02 MB/s) / 0.021 s (64.87 MB/s)     Compr. ratio:   6.2x
  *** zlib    , noshuffle  ***  0.047 s (29.26 MB/s) / 0.011 s (121.83 MB/s)    Compr. ratio:  14.7x
  *** zlib    , shuffle    ***  0.080 s (17.20 MB/s) / 0.022 s (63.61 MB/s)     Compr. ratio:   9.4x
  *** zlib    , bitshuffle ***  0.059 s (23.50 MB/s) / 0.033 s (41.10 MB/s)     Compr. ratio:  10.5x
  *** zstd    , noshuffle  ***  0.113 s (12.21 MB/s) / 0.011 s (124.64 MB/s)    Compr. ratio:  15.6x
  *** zstd    , shuffle    ***  0.154 s (8.92 MB/s) / 0.026 s (52.56 MB/s)      Compr. ratio:   9.9x
  *** zstd    , bitshuffle ***  0.116 s (11.86 MB/s) / 0.036 s (38.40 MB/s)     Compr. ratio:  11.4x

For details on the ARM benchmark see: https://github.com/Blosc/python-blosc/issues/105

In case you find your own results interesting, please report them back to the authors!

License

The software is licenses under a 3-Clause BSD licsense. A copy of the python-blosc license can be found in LICENSE.txt.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

http://groups.google.es/group/blosc


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc-1.11.0.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

blosc-1.11.0-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc-1.11.0-cp311-cp311-win32.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86

blosc-1.11.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

blosc-1.11.0-cp311-cp311-musllinux_1_1_i686.whl (2.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

blosc-1.11.0-cp311-cp311-musllinux_1_1_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

blosc-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc-1.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

blosc-1.11.0-cp311-cp311-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc-1.11.0-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc-1.11.0-cp310-cp310-win32.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86

blosc-1.11.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc-1.11.0-cp310-cp310-musllinux_1_1_i686.whl (2.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

blosc-1.11.0-cp310-cp310-musllinux_1_1_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

blosc-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc-1.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

blosc-1.11.0-cp310-cp310-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc-1.11.0-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc-1.11.0-cp39-cp39-win32.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86

blosc-1.11.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc-1.11.0-cp39-cp39-musllinux_1_1_i686.whl (2.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

blosc-1.11.0-cp39-cp39-musllinux_1_1_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

blosc-1.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc-1.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc-1.11.0-cp39-cp39-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc-1.11.0-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc-1.11.0-cp38-cp38-win32.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86

blosc-1.11.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

blosc-1.11.0-cp38-cp38-musllinux_1_1_i686.whl (2.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

blosc-1.11.0-cp38-cp38-musllinux_1_1_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

blosc-1.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

blosc-1.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

blosc-1.11.0-cp38-cp38-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file blosc-1.11.0.tar.gz.

File metadata

  • Download URL: blosc-1.11.0.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for blosc-1.11.0.tar.gz
Algorithm Hash digest
SHA256 c985b8f435dbc49b190fe88947539ed710ad0e9aaaf83778acc506a71ada7bd2
MD5 3f3543688439c244c62ee485641f5348
BLAKE2b-256 6ed111915a60c1b4522942fad5df2bb99602652fffa9f1717122f0b66c819dff

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc-1.11.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for blosc-1.11.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c5b428af8b5d81823eacd6914a517116cbe0eb7b1c5e4522e367de195b8daa3c
MD5 02f584c13fd9c32808c31b3680b8a987
BLAKE2b-256 deeadb580093b232b468a5cb34249e10489e5798b7fcf5db4641b9af944ce94e

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: blosc-1.11.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for blosc-1.11.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 bdccddcd72e0d6735668419ec20092c504d3d9eb764f54bc86df4414cbbbf6ea
MD5 0f4a11e242483aaccb6ce0cfea8745ed
BLAKE2b-256 05d7227667a94eb1d3a8090e63b67d57ae146f86ba82e304c7994bd6a1a3077a

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3bf8c0033853b938bab091a0f8faab12ccd90ec26bcf59b3d7062c69356684f8
MD5 55d74b17a048525450c0b9b969e25a78
BLAKE2b-256 2f56501c6023f413ed641db48345f03120494c6457422cd489cf886741a85e04

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f8b87bdfe569d3a4d04fb4294d6e1d03a890de76d90560d3971a01073521293d
MD5 81cf61dacde411e6a6a52afc150d355b
BLAKE2b-256 dadc592efb136c1b83b7896862ba1b79edfd4da489c218a236ad213cc4a936be

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 66ee4e2164d2d899479628ab61ff5ac412144bec25ba9e1619bff3816ecaa7d6
MD5 d177ad2d1a5f1ee8de7e7ea434e1bcd9
BLAKE2b-256 53df1b432a2d250236f46037f0c5f914217857dfa4265cd4623a7305dd5c5162

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a3d6234f6cb2ce88575bba481f2ab60048045637cd905471d0d4801a73ef3b0
MD5 5e8d2dbff0142c34e8badc2f3cf57f62
BLAKE2b-256 25499660460dc035fdd3aa61996ccf98ad0afebd9e363c0e82f9ea44818daa93

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2895c0c6a2b124a33ca85f531e05cb57de0109c41a95f4b295f1166e42fbbe8b
MD5 282bada9320c777ff8e4345f436350e0
BLAKE2b-256 4ced94fec09b4a86e4054e7805a8532e774fb6cd8d664d01700449b9d731d4a7

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dd0b0b194fc8a9f33ce9e5ca6482f8c199eeee28a1ffea83d3153f33cddb6bb2
MD5 ae3b1a69067d6110613d46e5ed90a529
BLAKE2b-256 a2f6b40b49dffae95b0c30413bb561bd960433e7cb6166cf5b87306c41aa4c5b

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc-1.11.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for blosc-1.11.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d873cfd1f448e75ca838fa578f1b115ca9fb803dfae0a7177e3c6b2642d2c0b1
MD5 01375e6613d85064a4986b356257eb06
BLAKE2b-256 f3b73639f8cdfd195915a46f769f64bc9581528dcf9fc616e8836375a209952d

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: blosc-1.11.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for blosc-1.11.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ad4f5fec46a74cd5cfe53bf5f19e02b2675276c5d9b4eb9236d95b3404296805
MD5 2a39236194633408dc85fb6194ea72f3
BLAKE2b-256 e4df971a0b6fe100b35c0b5a1c6e74924e2da3531351ee96f487adee20eae919

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 88783db96cd61a5f2f71b0dde1be326a9587a3b611810c482a8b19d4be600718
MD5 fccd15d71cf759017ae02285632a6794
BLAKE2b-256 812e7561a35627dbc15ca3825ee2fb38b99afb14529d14592a75553c367c53fd

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bfc371c9a6ae714fdbebddc9cfed118942bb3f85e97b3afc4c456a42faf3ae26
MD5 43b1216a0ad2232911b5f9b18294227b
BLAKE2b-256 d30a4c400a1681de19b82dcac1025c937f5450ff2c73010e4add29f80d960918

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 fab3a6c185f74e02eef670a2f2921aec8f5d67ae615db4b1e9620028a3d11dbd
MD5 f19174b07d83eb300adaad3224d9855b
BLAKE2b-256 0731dc82d5042938fca7bcf7ee5655a57dceec9856ed11e90983c2077b603183

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23685e354e577c1a529c866c5e89f78918cb3427301227d22115c18c488fa2ac
MD5 3f4cef53a65667f1f015066753d8eeca
BLAKE2b-256 eda388abc499535262a8f1d438e1b1beaf96e13d4bc6a05d89d5760f2179dd39

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 82ba3e440d36a932ac8e9fb1188954ebeb046eb917b54ab26cdac1704ab4e429
MD5 5500017a6ccdb94d4ddccb6c8c8e3b46
BLAKE2b-256 7363500e9e59fd3248fed2df9048a23412f920794e155e554db8f071d64488dc

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5bb826c1ff424c8a1aeee3a8ed52292092d83c8c9555dfb3fc6a6ee5db61b38c
MD5 306eef3a63f2fd36c23735f8a2def644
BLAKE2b-256 31e6317533741f0859fda9acc6c7e9d933a2213e718a8aac0de115504d65aa2d

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc-1.11.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for blosc-1.11.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 029668f6d7fee1b6431d72747ec232cc77cc61875b883d3afd1035e35c9c9a5b
MD5 2bb4632deb8a498692cd4abbb4b098a4
BLAKE2b-256 7cec4247ab990c8cc7656e6b14761a362df7db00fc1b86ac5b1734b4ada8ee5a

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc-1.11.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for blosc-1.11.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4c8483a58747094838da1be831f216fee7f920174d7b017de3e4e06ea51fa3b0
MD5 b8b18f3d6e8b89a638da481df8660427
BLAKE2b-256 34dd8d648f6f945c5f04f6ea90a8b4b7177ad63ef842a8e056b8752b36339986

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 265f1cd389ede463fbbd127e3a0ca05aa0ffc3ba5808f98832b9ee26b2b4b750
MD5 63cae32673be93ab00ef4dc787b575ec
BLAKE2b-256 f09486759f30ecc5a512049e8b164eef223eef8ec78c9bfd49c679a9f4ac4cc3

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 890722955dad33164fd9690f14eb15d75cc1e7206a7ec11496414a817a8a2ef1
MD5 b7631b5e405367a2b5267714f9c6f201
BLAKE2b-256 25e90a2e01a6c93d1a02293aba13e614af4db3ef4ea11d17892e6410d149ce32

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e3d7f4a16ef4b806ce627fbc592bdaf0dd8d9b8d0fd59eb7591053087b45f665
MD5 5b59110130ee6ea156e3eba11b544a22
BLAKE2b-256 7c3d30f736bf9fdb09d8b80bb4f974d633b12df5f143ba76f30b3f998f00c3f9

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d607e044822396028f46ca801965a95089a2a7c2712a478ecb7fbf5a0d26f2f
MD5 74b86bb359eb92c043c8f03d2a077fdc
BLAKE2b-256 ef7ba0016afd038f6392c0e8452411355e22f5f8c3316c7340dbbf699a731ae2

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cd5325f11176a4c33e807faf87120d1789d521f66cc475558889f5c94707b9b4
MD5 52f7be28b287ec29479724294779467e
BLAKE2b-256 a09dddb927d861f5a48c09d6c06a171993698b18b6227acc8646e316751ec9ab

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7576a8a47bf621ac6f97fc0fcab43c39d16dcc6a67305ff8ee87ce469adc10c4
MD5 046a6d3061092128ae16df98b520838e
BLAKE2b-256 bf522a43c96195af95d9032b0f5abe5b7507fa3d5a4faa806b71e9be00c6a6b6

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc-1.11.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for blosc-1.11.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5cb5a0e5f161eb35a2c06c1f92946045dc80d3169cb703e53f1c81de1bc978ec
MD5 05432184a0dff476f02493ada6c29a06
BLAKE2b-256 29b86f47bc51971da5c2414b1b398be54786322dafa6b70bdfc3967fecafb10f

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: blosc-1.11.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for blosc-1.11.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 2a0cd19d189c1efc48f4c4f44de2ed49fa8b0d5f53de9c8ac740a34d634c1c9b
MD5 27e30667deb4a8e24775baf224891718
BLAKE2b-256 5c63b6103f07933f0810a5eae15dca1301298bb7dcc557993b21f7d7d99076db

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ae703bb68581e4b05d1a34843526d0bbfc8afe57cfaf6bf4957c6f31d3524c28
MD5 5a13cc9af04b96decb10ad7b54cb5615
BLAKE2b-256 92f0e745e4e0eb875761447bddfb2beff80f7b5e937524ad99bc543dcace377d

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 186a7bd7790686e941497403075632a15d90c0370db0b40f654c805acfe1f702
MD5 ce33043ed26674f52303f5d870284661
BLAKE2b-256 132a651810f0e55a9636924ea0d93d2e2a29f56d7f9226e9b47c2c5378363f35

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7ca6d5bcecab6de7ac9bb996b5a3daec09ae5fe59e4cb1f5b80292bfab54ae40
MD5 e7d476097d51fb02f8bceceeba64aa10
BLAKE2b-256 db85368929de91ba24e663a24fafacf324aee428b447ae9949f1a09100012e39

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd05476e275263d8bfcba791e13ab0a3c04252527aa7fd2db655550c326523d7
MD5 c9ec18fb615218517dc319a3203a531b
BLAKE2b-256 5c378c032a727749af68401a913d8b855f440b98de8daa3c5797d1df373f53d9

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4663d396e2c680d75e57a5854be76adf3743bb232e46de7ca10887cfa421b45d
MD5 ba881f19b81d05af2797603b631f2fe8
BLAKE2b-256 bb7fbe9d830f1cc7be6de9e6cc78115daf7c00ba0299e6bed289d50accead69d

See more details on using hashes here.

File details

Details for the file blosc-1.11.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fbf3213cf04ff8acb71ca51fadf3500796493a48d1bebd893c5236866fde3ca3
MD5 56a8c2b9a386eff7f296428bfd830958
BLAKE2b-256 59df9b60dc7b9234300b23859b588bbfac3b6553b015c69c02e69af277f60ead

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page