Skip to main content

Blosc data compressor

Project description

A Python wrapper for the extremely fast Blosc compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc

URL:

https://www.blosc.org/python-blosc/python-blosc.html

PyPi:

version

Anaconda:

anaconda

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (http://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc a Python package that wraps Blosc. python-blosc supports Python 3.8 or higher versions.

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

$ pip install blosc

Documentation

The Sphinx based documentation is here:

https://blosc.org/python-blosc/python-blosc.html

Also, some examples are available on python-blosc wiki page:

https://github.com/blosc/python-blosc/wiki

Lastly, here is the recording and the slides from the talk “Compress me stupid” at the EuroPython 2014.

Building

If you need more control, there are different ways to compile python-blosc, depending if you want to link with an already installed Blosc library or not.

Installing via setuptools

python-blosc comes with the Blosc sources with it and can be built with:

$ python -m pip install -r requirements-dev.txt
$ python setup.py build_ext --inplace

Any codec can be enabled (=1) or disabled (=0) on this build-path with the appropriate OS environment variables INCLUDE_LZ4, INCLUDE_SNAPPY, INCLUDE_ZLIB, and INCLUDE_ZSTD. By default all the codecs in Blosc are enabled except Snappy (due to some issues with C++ with the gcc toolchain).

Compiler specific optimisations are automatically enabled by inspecting the CPU flags building Blosc. They can be manually disabled by setting the following environmental variables: DISABLE_BLOSC_SSE2 and DISABLE_BLOSC_AVX2.

setuptools is limited to using the compiler specified in the environment variable CC which on posix systems is usually gcc. This often causes trouble with the Snappy codec, which is written in C++, and as a result Snappy is no longer compiled by default. This problem is not known to affect MSVC or clang. Snappy is considered optional in Blosc as its compression performance is below that of the other codecs.

That’s all. You can proceed with testing section now.

Compiling with an installed Blosc library

This approach uses pre-built, fully optimized versions of Blosc built via CMake.

Go to https://github.com/Blosc/c-blosc/releases and download and install the C-Blosc library. Then, you can tell python-blosc where is the C-Blosc library in a couple of ways:

Using an environment variable:

$ export USE_SYSTEM_BLOSC=1                 # or "set USE_SYSTEM_BLOSC=1" on Windows
$ export Blosc_ROOT=/usr/local/customprefix # If you installed Blosc into a custom location
$ python setup.py build_ext --inplace

Using flags:

$ python setup.py build_ext --inplace -DUSE_SYSTEM_BLOSC:BOOL=YES -DBlosc_ROOT:PATH=/usr/local/customprefix

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

$ python -m blosc.test  (add -v for verbose mode)

Once installed, you can re-run the tests at any time with:

$ python -c "import blosc; blosc.test()"

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

$ PYTHONPATH=. python bench/compress_ptr.py

Just to whet your appetite, here are the results for an Intel Xeon E5-2695 v3 @ 2.30GHz, running Python 3.5, CentOS 7, but YMMV (and will vary!):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.5.1.dev0
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.7
  Zstd: 1.1.2
Python version: 3.5.2 |Continuum Analytics, Inc.| (default, Jul  2 2016, 17:53:06)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
Platform: Linux-3.10.0-327.18.2.el7.x86_64-x86_64 (#1 SMP Thu May 12 11:03:55 UTC 2016)
Linux dist: CentOS Linux 7.2.1511
Processor: x86_64
Byte-ordering: little
Detected cores: 56
Number of threads to use by default: 4
  -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** ctypes.memmove() *** Time for memcpy(): 0.276 s (2.70 GB/s)

Times for compressing/decompressing with clevel=5 and 24 threads

*** the arange linear distribution ***
  *** blosclz , noshuffle  ***  0.382 s (1.95 GB/s) / 0.300 s (2.48 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.042 s (17.77 GB/s) / 0.027 s (27.18 GB/s)   Compr. ratio:  57.1x
  *** blosclz , bitshuffle ***  0.094 s (7.94 GB/s) / 0.041 s (18.28 GB/s)    Compr. ratio:  74.0x
  *** lz4     , noshuffle  ***  0.156 s (4.79 GB/s) / 0.052 s (14.30 GB/s)    Compr. ratio:   2.0x
  *** lz4     , shuffle    ***  0.033 s (22.58 GB/s) / 0.034 s (22.03 GB/s)   Compr. ratio:  68.6x
  *** lz4     , bitshuffle ***  0.059 s (12.63 GB/s) / 0.053 s (14.18 GB/s)   Compr. ratio:  33.1x
  *** lz4hc   , noshuffle  ***  0.443 s (1.68 GB/s) / 0.070 s (10.62 GB/s)    Compr. ratio:   2.0x
  *** lz4hc   , shuffle    ***  0.102 s (7.31 GB/s) / 0.029 s (25.42 GB/s)    Compr. ratio:  97.5x
  *** lz4hc   , bitshuffle ***  0.206 s (3.62 GB/s) / 0.038 s (19.85 GB/s)    Compr. ratio: 180.5x
  *** snappy  , noshuffle  ***  0.154 s (4.84 GB/s) / 0.056 s (13.28 GB/s)    Compr. ratio:   2.0x
  *** snappy  , shuffle    ***  0.044 s (16.89 GB/s) / 0.047 s (15.95 GB/s)   Compr. ratio:  17.4x
  *** snappy  , bitshuffle ***  0.064 s (11.58 GB/s) / 0.061 s (12.26 GB/s)   Compr. ratio:  18.2x
  *** zlib    , noshuffle  ***  1.172 s (0.64 GB/s) / 0.135 s (5.50 GB/s)     Compr. ratio:   5.3x
  *** zlib    , shuffle    ***  0.260 s (2.86 GB/s) / 0.086 s (8.67 GB/s)     Compr. ratio: 120.8x
  *** zlib    , bitshuffle ***  0.262 s (2.84 GB/s) / 0.094 s (7.96 GB/s)     Compr. ratio: 260.1x
  *** zstd    , noshuffle  ***  0.973 s (0.77 GB/s) / 0.093 s (8.00 GB/s)     Compr. ratio:   7.8x
  *** zstd    , shuffle    ***  0.093 s (7.97 GB/s) / 0.023 s (32.71 GB/s)    Compr. ratio: 156.7x
  *** zstd    , bitshuffle ***  0.115 s (6.46 GB/s) / 0.029 s (25.60 GB/s)    Compr. ratio: 320.6x

*** the linspace linear distribution ***
  *** blosclz , noshuffle  ***  0.341 s (2.19 GB/s) / 0.291 s (2.56 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.132 s (5.65 GB/s) / 0.023 s (33.10 GB/s)    Compr. ratio:   2.0x
  *** blosclz , bitshuffle ***  0.166 s (4.50 GB/s) / 0.036 s (20.89 GB/s)    Compr. ratio:   2.8x
  *** lz4     , noshuffle  ***  0.142 s (5.26 GB/s) / 0.028 s (27.07 GB/s)    Compr. ratio:   1.0x
  *** lz4     , shuffle    ***  0.093 s (8.01 GB/s) / 0.030 s (24.87 GB/s)    Compr. ratio:   3.4x
  *** lz4     , bitshuffle ***  0.102 s (7.31 GB/s) / 0.039 s (19.13 GB/s)    Compr. ratio:   5.3x
  *** lz4hc   , noshuffle  ***  0.700 s (1.06 GB/s) / 0.044 s (16.77 GB/s)    Compr. ratio:   1.1x
  *** lz4hc   , shuffle    ***  0.203 s (3.67 GB/s) / 0.021 s (36.22 GB/s)    Compr. ratio:   8.6x
  *** lz4hc   , bitshuffle ***  0.342 s (2.18 GB/s) / 0.028 s (26.50 GB/s)    Compr. ratio:  14.2x
  *** snappy  , noshuffle  ***  0.271 s (2.75 GB/s) / 0.274 s (2.72 GB/s)     Compr. ratio:   1.0x
  *** snappy  , shuffle    ***  0.099 s (7.54 GB/s) / 0.042 s (17.55 GB/s)    Compr. ratio:   4.2x
  *** snappy  , bitshuffle ***  0.127 s (5.86 GB/s) / 0.043 s (17.20 GB/s)    Compr. ratio:   6.1x
  *** zlib    , noshuffle  ***  1.525 s (0.49 GB/s) / 0.158 s (4.70 GB/s)     Compr. ratio:   1.6x
  *** zlib    , shuffle    ***  0.346 s (2.15 GB/s) / 0.098 s (7.59 GB/s)     Compr. ratio:  10.7x
  *** zlib    , bitshuffle ***  0.420 s (1.78 GB/s) / 0.104 s (7.20 GB/s)     Compr. ratio:  18.0x
  *** zstd    , noshuffle  ***  1.061 s (0.70 GB/s) / 0.096 s (7.79 GB/s)     Compr. ratio:   1.9x
  *** zstd    , shuffle    ***  0.203 s (3.68 GB/s) / 0.052 s (14.21 GB/s)    Compr. ratio:  14.2x
  *** zstd    , bitshuffle ***  0.251 s (2.97 GB/s) / 0.047 s (15.84 GB/s)    Compr. ratio:  22.2x

*** the random distribution ***
  *** blosclz , noshuffle  ***  0.340 s (2.19 GB/s) / 0.285 s (2.61 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.091 s (8.21 GB/s) / 0.017 s (44.29 GB/s)    Compr. ratio:   3.9x
  *** blosclz , bitshuffle ***  0.080 s (9.27 GB/s) / 0.029 s (26.12 GB/s)    Compr. ratio:   6.1x
  *** lz4     , noshuffle  ***  0.150 s (4.95 GB/s) / 0.027 s (28.05 GB/s)    Compr. ratio:   2.4x
  *** lz4     , shuffle    ***  0.068 s (11.02 GB/s) / 0.029 s (26.03 GB/s)   Compr. ratio:   4.5x
  *** lz4     , bitshuffle ***  0.063 s (11.87 GB/s) / 0.054 s (13.70 GB/s)   Compr. ratio:   6.2x
  *** lz4hc   , noshuffle  ***  0.645 s (1.15 GB/s) / 0.019 s (39.22 GB/s)    Compr. ratio:   3.5x
  *** lz4hc   , shuffle    ***  0.257 s (2.90 GB/s) / 0.022 s (34.62 GB/s)    Compr. ratio:   5.1x
  *** lz4hc   , bitshuffle ***  0.128 s (5.80 GB/s) / 0.029 s (25.52 GB/s)    Compr. ratio:   6.2x
  *** snappy  , noshuffle  ***  0.164 s (4.54 GB/s) / 0.048 s (15.46 GB/s)    Compr. ratio:   2.2x
  *** snappy  , shuffle    ***  0.082 s (9.09 GB/s) / 0.043 s (17.39 GB/s)    Compr. ratio:   4.3x
  *** snappy  , bitshuffle ***  0.071 s (10.48 GB/s) / 0.046 s (16.08 GB/s)   Compr. ratio:   5.0x
  *** zlib    , noshuffle  ***  1.223 s (0.61 GB/s) / 0.093 s (7.97 GB/s)     Compr. ratio:   4.0x
  *** zlib    , shuffle    ***  0.636 s (1.17 GB/s) / 0.126 s (5.89 GB/s)     Compr. ratio:   5.5x
  *** zlib    , bitshuffle ***  0.327 s (2.28 GB/s) / 0.109 s (6.81 GB/s)     Compr. ratio:   6.2x
  *** zstd    , noshuffle  ***  1.432 s (0.52 GB/s) / 0.103 s (7.27 GB/s)     Compr. ratio:   4.2x
  *** zstd    , shuffle    ***  0.388 s (1.92 GB/s) / 0.031 s (23.71 GB/s)    Compr. ratio:   5.9x
  *** zstd    , bitshuffle ***  0.127 s (5.86 GB/s) / 0.033 s (22.77 GB/s)    Compr. ratio:   6.4x

Also, Blosc works quite well on ARM processors (even without NEON support yet):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.4.4
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.8
  Zstd: 1.1.2
Python version: 3.6.0 (default, Dec 31 2016, 21:20:16)
[GCC 4.9.2]
Platform: Linux-3.4.113-sun8i-armv7l (#50 SMP PREEMPT Mon Nov 14 08:41:55 CET 2016)
Linux dist: debian 9.0
Processor: not recognized
Byte-ordering: little
Detected cores: 4
Number of threads to use by default: 4
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
  *** ctypes.memmove() *** Time for memcpy():   0.015 s (93.57 MB/s)

Times for compressing/decompressing with clevel=5 and 4 threads

*** user input ***
  *** blosclz , noshuffle  ***  0.015 s (89.93 MB/s) / 0.010 s (138.32 MB/s)    Compr. ratio:   2.7x
  *** blosclz , shuffle    ***  0.023 s (60.25 MB/s) / 0.012 s (112.71 MB/s)    Compr. ratio:   2.3x
  *** blosclz , bitshuffle ***  0.018 s (77.63 MB/s) / 0.021 s (66.76 MB/s)     Compr. ratio:   7.3x
  *** lz4     , noshuffle  ***  0.008 s (177.14 MB/s) / 0.009 s (159.00 MB/s)   Compr. ratio:   3.6x
  *** lz4     , shuffle    ***  0.010 s (131.29 MB/s) / 0.012 s (117.69 MB/s)   Compr. ratio:   3.5x
  *** lz4     , bitshuffle ***  0.015 s (89.97 MB/s) / 0.022 s (63.62 MB/s)     Compr. ratio:   8.4x
  *** lz4hc   , noshuffle  ***  0.071 s (19.30 MB/s) / 0.007 s (186.64 MB/s)    Compr. ratio:   8.6x
  *** lz4hc   , shuffle    ***  0.079 s (17.30 MB/s) / 0.014 s (95.99 MB/s)     Compr. ratio:   6.2x
  *** lz4hc   , bitshuffle ***  0.062 s (22.23 MB/s) / 0.027 s (51.53 MB/s)     Compr. ratio:   9.7x
  *** snappy  , noshuffle  ***  0.008 s (173.87 MB/s) / 0.009 s (148.77 MB/s)   Compr. ratio:   4.4x
  *** snappy  , shuffle    ***  0.011 s (123.22 MB/s) / 0.016 s (85.16 MB/s)    Compr. ratio:   4.4x
  *** snappy  , bitshuffle ***  0.015 s (89.02 MB/s) / 0.021 s (64.87 MB/s)     Compr. ratio:   6.2x
  *** zlib    , noshuffle  ***  0.047 s (29.26 MB/s) / 0.011 s (121.83 MB/s)    Compr. ratio:  14.7x
  *** zlib    , shuffle    ***  0.080 s (17.20 MB/s) / 0.022 s (63.61 MB/s)     Compr. ratio:   9.4x
  *** zlib    , bitshuffle ***  0.059 s (23.50 MB/s) / 0.033 s (41.10 MB/s)     Compr. ratio:  10.5x
  *** zstd    , noshuffle  ***  0.113 s (12.21 MB/s) / 0.011 s (124.64 MB/s)    Compr. ratio:  15.6x
  *** zstd    , shuffle    ***  0.154 s (8.92 MB/s) / 0.026 s (52.56 MB/s)      Compr. ratio:   9.9x
  *** zstd    , bitshuffle ***  0.116 s (11.86 MB/s) / 0.036 s (38.40 MB/s)     Compr. ratio:  11.4x

For details on the ARM benchmark see: https://github.com/Blosc/python-blosc/issues/105

In case you find your own results interesting, please report them back to the authors!

License

The software is licenses under a 3-Clause BSD licsense. A copy of the python-blosc license can be found in LICENSE.txt.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

http://groups.google.es/group/blosc


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc-1.11.1.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

blosc-1.11.1-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc-1.11.1-cp311-cp311-win32.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86

blosc-1.11.1-cp311-cp311-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

blosc-1.11.1-cp311-cp311-musllinux_1_1_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

blosc-1.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc-1.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

blosc-1.11.1-cp311-cp311-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

blosc-1.11.1-cp311-cp311-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc-1.11.1-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc-1.11.1-cp310-cp310-win32.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86

blosc-1.11.1-cp310-cp310-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc-1.11.1-cp310-cp310-musllinux_1_1_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

blosc-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc-1.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

blosc-1.11.1-cp310-cp310-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

blosc-1.11.1-cp310-cp310-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc-1.11.1-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc-1.11.1-cp39-cp39-win32.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86

blosc-1.11.1-cp39-cp39-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc-1.11.1-cp39-cp39-musllinux_1_1_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

blosc-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc-1.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc-1.11.1-cp39-cp39-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

blosc-1.11.1-cp39-cp39-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc-1.11.1-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc-1.11.1-cp38-cp38-win32.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86

blosc-1.11.1-cp38-cp38-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

blosc-1.11.1-cp38-cp38-musllinux_1_1_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

blosc-1.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

blosc-1.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

blosc-1.11.1-cp38-cp38-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

blosc-1.11.1-cp38-cp38-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file blosc-1.11.1.tar.gz.

File metadata

  • Download URL: blosc-1.11.1.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for blosc-1.11.1.tar.gz
Algorithm Hash digest
SHA256 c22119b27bae1063a697f639028b422d55811b0880c3fc0149cbdea791d0b276
MD5 a6819e5de777a55206236f4db68a857b
BLAKE2b-256 40263dc5b6163bb335fb175717b1589e78c865c7601a0513131628024bcaf54b

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc-1.11.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for blosc-1.11.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 751a4ad8b4696d1c54f05a5255fe911d72f424cd03a9ce97525d67f40946b2ea
MD5 88a9eff79b7ffa79004cd744ef49ae67
BLAKE2b-256 084707d90bee5e789d1393a18dac72bcc6dd50ead1bbc933c8ecec45432bea47

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: blosc-1.11.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for blosc-1.11.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 7b40a99add3120a26bc92e7a751a01e4aa854fc1835e0d12e9cf77dbf5498a2a
MD5 29907d3684c73e812006f6a50c3242ec
BLAKE2b-256 a035bb47ad5c6065afcbe2ef84decd80c324d265ffe421a1b004a30754b61a68

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dfbb2bb0a3a69006ad0c627247b53e8ed5f844fc5cd5f09979f1e174f6dc4a6e
MD5 bf1ba86d040b0753569601cc7f74ce72
BLAKE2b-256 fd85e10daf6b1280062727864d20a738862c3a442c4e98fbb8bc266041c0d8b8

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 94010a4fc094dda5a9abd9546e1f97af9a7dbd903a6eee39dd13244c7c419412
MD5 8feacc6805a50d34b6bc61bd54dc2718
BLAKE2b-256 dcab99441bdd4eb5e62fbf640b6c7945df551f8e7903fa52a782902381d5aa50

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a74c7bc804c608de4dc53c873f8ef5b481b9e3b0b6381e7d3fcff92683de9547
MD5 814eab4ee0a3869a28c02b34383d0ba5
BLAKE2b-256 3f42f83814c56b1749466c99a833d1177772cc4c7816dbb3d807268759483905

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 417fb44fd50887e4b3e2f8fc91f350c791bf0e39a1b4d45a41071fc416fb767a
MD5 b8780f09c6a3d91d75f2223e25a1ecb4
BLAKE2b-256 7c1d68ab78e56c055e027638227d7c16f27091f47aeb09218c263d79d2d0e459

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8321241c37f25ad4a21e3e0731246753b557dd8910eaee32bf7510eeee03648a
MD5 4928619119e8e8378d91264994294975
BLAKE2b-256 62a941bcfd69d243a94c2a6b7ed867dc89a97daa5db5f0cb55825dfd82d35dd0

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 88c2eba2c9c013e44d5841660f7832425ebdc0bcfce9e11c59a8eb732f28cf9d
MD5 27c05b7f20f3b833ba4c0bf70baf6842
BLAKE2b-256 7e33fb4707aab932d8aff9ca8a3bc10cc1818e66f54643c90fbd47d5ed2f8c78

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc-1.11.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for blosc-1.11.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f889715e28bbdc2f927a546f8debf403947cea1e3dd8f15e1428b66701416ee6
MD5 5e257560d0626172a0978c90cb259f54
BLAKE2b-256 d71cff8014057f7f569fd77e998a9b4595aa6408dbef91d362c74d19bf68fbde

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: blosc-1.11.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for blosc-1.11.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 5d0ceff7a19f3c5c42d9d5ec13a90ae0b69cb2731e797a58ca0e3b25018cbb69
MD5 a36ba7244f00c0ddbb9d20b4e12a16aa
BLAKE2b-256 5b6a862390290df928d092b2f5285c5827b751609be54ac33ee546eabac1963e

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bef546a039a1d984c6d2ed516ffcbc2a09dbbba61a0951c5197fad3f718095b1
MD5 96808769d26fe67d76de8514a4b33622
BLAKE2b-256 b3c17ca8ede615217b1c407ba433437c5fc015c9ed665d8eac6f6de75d6de6fa

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 705df0302ba73293b6109800110994841d5de4491318a3b06c5bbcec32756939
MD5 ba6aaf11894eb047c7146d75b20caa44
BLAKE2b-256 1e14eee8ed3b56b509669c4721f8df0588a07f3550fc6b5fd5321259d405866a

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bba4cfbc0a86788eb38acc05eb35ba97e2897441416c5f927f243ed7b4b406b6
MD5 c6cd2010f97f815724b6429353391071
BLAKE2b-256 e0945a108b480913fc088658f44b208d18a0dea1a847763b50ad2ccc7e032424

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 41578759a913122ba63c24750cb53f861a557a0946f5bb80ad62625e95c7f45a
MD5 3bbe453fb593262e11598334c6cac9d7
BLAKE2b-256 e1e6525f6d4052aa325586398e526ebf369a8baf43fb6bc1581aaf1f70abc0c8

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8907404c3058ac4a767a0a8b279c4c5aaf90431b7238f5b9b464eebe50b91010
MD5 068b72a34d09ab09b03bde42ec2affaf
BLAKE2b-256 7e93656810ae0f88d2e9e5067352e3a5b68713edcf963a86d4fe33c514e5cdea

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 345577759e5e1cd0905faf89ad1dbcc60bb7a56b759985a417c5b0cab0e0117a
MD5 cd055f5afed20adad8b2cade7d97d5b8
BLAKE2b-256 d5bc471adb6160823adaef5ba29060c4460ef2ef8b62615a1d6404114f784d30

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc-1.11.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for blosc-1.11.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9c6371779ca9ec469735b05ee0a119cc431d72008f9f2813ca73d4acf2b39b2f
MD5 cab4710c171b866a8a11d572374f3424
BLAKE2b-256 25a4edeb3ed7e9f80f860ed642ea6c5cdb562ced9df69dd14952257a0119de3e

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc-1.11.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for blosc-1.11.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 213ce859c89625c64776c8a59c6b235bca6dea81c185a273703366e733880ff5
MD5 2da19558c5f0c5d5297e27042d17c686
BLAKE2b-256 5f9eee45016b7daf5217dc17c09fcc6a2484c037c99695e6ebe9715a793fcc0c

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 aa129006fabeec63a1e54d30863e0a0330ec72caedbd5a5c282121796e84e1a0
MD5 866bf5639242c19ea65f1158c8b70c3a
BLAKE2b-256 72f367574171a65dbf60c7896c46bd9451107376ef1b68d0be4613739470ac67

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c793b3e33d025161bd3f8dcacc9bdfa011218eafbc607e195360456d3306ebf9
MD5 7cfcb49ff0157ed4598a2cc9debce986
BLAKE2b-256 fb44a233a636673c626b2fa9bc40ec3efd25a4f160c5f2d5620f7be05b813cc0

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf07fccaa1d76fdb03d4eed641a71f2f54be1d1bffba9300bab4c8f437017b46
MD5 e986eb94d6f4cc705ed42bca4d750fc3
BLAKE2b-256 831be01c07c66c920508a901937e5dc2c0886a30555fed5bee752811f1882dcb

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 24dfeafbbe0b4b6a028fcfd22c3920be738d6ef9e9d2ffcb2b66153f18ad455d
MD5 8425d24ffad07d58fac0bd0598a77ce1
BLAKE2b-256 66fa5d41e35fdf49c5fc181e82650250c6d433361b4fad1438d9061f50ab0c77

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 270cf6aa4da391950e0140cc9ee9ced8562e04d4eb1473fa42fc454b81eaeb80
MD5 8402a2f392b8e4defba22af00577f98a
BLAKE2b-256 a06242c4c70976f9aea64adb6060bd36706556b0b38adbfe23d437bc3c51deb5

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 69cf3d2bc196befe4adddc3cca08315fd9e05208887b9fe031942e204d48ed49
MD5 2c17f4df0d84bbe985b9acbbed6b5697
BLAKE2b-256 e9229fa7ea69ebad49fdd944bd902cc48a434011e64fa9636fbba192dd543fb7

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc-1.11.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for blosc-1.11.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 da627a51bc2947a698097ac0ccf2f6e51a3aed77f2d4297295365ef8a18d748e
MD5 26f405442d112bb75b3f851ed096924b
BLAKE2b-256 8a89794b30b506fd6456b46020304f44d66c91c24b1573df3c74ba2e227e3911

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: blosc-1.11.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for blosc-1.11.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b113c900cfb47272b63f0dbee95016e24720d24d46009aa558e131128fb26aa5
MD5 68d3dfc50a98bf931a12bade178930be
BLAKE2b-256 a7077f6571a8f8ddcb9a513478a1948cbb58721e12ae1df1a292654dfbcef15c

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 31ed162c9cc916c393eb9dada1beb632b11d4646afdf708c1c3f9d38402a4fab
MD5 72056064fd60607cab8b8c62d2c9a123
BLAKE2b-256 d39a8617ccbda22a457f64c3449cebdb9878ea6d7e30a88e37dd06be511a6bca

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1bfc0a2cd115aa6eac75b841840b00fee0dd7bf77793650bdf470e12cf105627
MD5 6ba03fac73edbbcc3f87f8406c34a6e7
BLAKE2b-256 1edcff4821a7d18708855dc4d08e9135ef3be53a22df84b076bf01a173dc6ab8

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e2283eb29c5938bfc63ae4091e0b3df5ef0492f83b9ffffa184532d1e5e7f8c
MD5 acc309541f7f2df3a4946098a178eeb0
BLAKE2b-256 3e8ea736c622da08ab7b205dfcf2a1f7a05e0213a28af38dcec0dcc668ddd7dd

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 038ab5690c016a15cc5bf47977ae57b9cb4517f5df3eccd895c2d6c6656da6e6
MD5 8e3da9284b9d89e1d2754af143744ba8
BLAKE2b-256 42fe4de62b12627c1f82e4f38b0c63a355df9cd791c887403cf9de1c05af38d4

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2078f8d4500c83387a0e1c3f750c9a6d4848a80e1bf07ec1fd9c87bb1e2e2e92
MD5 4b38d1b3a65f70443bc6dd61bc9edf54
BLAKE2b-256 7e9ac22d2b07abf45784c743142b0e4929ed56e702155ac8937eae7ddca3601e

See more details on using hashes here.

File details

Details for the file blosc-1.11.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc-1.11.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf25b0aaf209411ad7ff65f42ee6c42e87d2a9161990743cb21ea264a4509e7b
MD5 135276df9beab294712fdf70919064d7
BLAKE2b-256 fd7edb6ec25d626dd4965279c03c0f908e9a252302b96e7e93b61d09643ddf9d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page