Skip to main content

Blosc data compressor

Project description

python-blosc: a Python wrapper for the extremely fast Blosc compression library

Author:

Francesc Alted

Author:

Valentin Haenel

Contact:

faltet@gmail.com

Contact:

valentin@haenel.co

Github:

https://github.com/Blosc/python-blosc

URL:

http://python-blosc.blosc.org

Travis CI:

travis

Appveyor:

appveyor

PyPi:

version

Anaconda:

anaconda

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (http://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc a Python package that wraps Blosc. python-blosc supports Python 3.6 or higher versions.

Installing

You can install binary packages with conda:

$ conda install -c conda-forge python-blosc

Or, install it as a typical Python source package (requires c-compiler and Python headers) from PyPi using pip:

$ pip install blosc

Documentation

The Sphinx based documentation is here:

http://python-blosc.blosc.org

Also, some examples are available on python-blosc wiki page:

http://github.com/blosc/python-blosc/wiki

Lastly, here is the recording and the slides from the talk “Compress me stupid” at the EuroPython 2014.

Building

If you need more control, there are different ways to compile python-blosc, depending if you want to link with an already installed Blosc library or not.

Installing via setuptools

python-blosc comes with the Blosc sources with it and can be built with:

$ python -m pip install -r requirements-dev.txt
$ python setup.py build_ext --inplace

Any codec can be enabled (=1) or disabled (=0) on this build-path with the appropriate OS environment variables INCLUDE_LZ4, INCLUDE_SNAPPY, INCLUDE_ZLIB, and INCLUDE_ZLIB. By default all the codecs in Blosc are enabled except Snappy (due to some issues with C++ with the gcc toolchain).

Compiler specific optimisations are automatically enabled by inspecting the CPU flags building Blosc. They can be manually disabled by setting the following environmental variables: DISABLE_BLOSC_SSE2 and DISABLE_BLOSC_AVX2.

setuptools is limited to using the compiler specified in the environment variable CC which on posix systems is usually gcc. This often causes trouble with the Snappy codec, which is written in C++, and as a result Snappy is no longer compiled by default. This problem is not known to affect MSVC or clang. Snappy is considered optional in Blosc as its compression performance is below that of the other codecs.

That’s all. You can proceed with testing section now.

Compiling with an installed Blosc library

This approach uses pre-built, fully optimized versions of Blosc built via CMake.

Go to https://github.com/Blosc/c-blosc/releases and download and install the C-Blosc library. Then, you can tell python-blosc where is the C-Blosc library in a couple of ways:

Using an environment variable:

$ BLOSC_DIR=/usr/local     (or "set BLOSC_DIR=\blosc" on Win)
$ export BLOSC_DIR         (not needed on Win)
$ python setup.py build_clib
$ python setup.py build_ext --inplace

Using a flag:

$ python setup.py build_clib
$ python setup.py build_ext --inplace --blosc=/usr/local

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

$ PYTHONPATH=.   (or "set PYTHONPATH=." on Win)
$ export PYTHONPATH=.  (not needed on Win)
$ python blosc/test.py  (add -v for verbose mode)

Or alternatively, you can use the third-party nosetests script:

$ nosetests --with-doctest (add -v for verbose mode)

Once installed, you can re-run the tests at any time with:

$ python -c "import blosc; blosc.test()"

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

$ PYTHONPATH=. python bench/compress_ptr.py

Just to whet your appetite, here are the results for an Intel Xeon E5-2695 v3 @ 2.30GHz, running Python 3.5, CentOS 7, but YMMV (and will vary!):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.5.1.dev0
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.7
  Zstd: 1.1.2
Python version: 3.5.2 |Continuum Analytics, Inc.| (default, Jul  2 2016, 17:53:06)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
Platform: Linux-3.10.0-327.18.2.el7.x86_64-x86_64 (#1 SMP Thu May 12 11:03:55 UTC 2016)
Linux dist: CentOS Linux 7.2.1511
Processor: x86_64
Byte-ordering: little
Detected cores: 56
Number of threads to use by default: 4
  -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** ctypes.memmove() *** Time for memcpy(): 0.276 s (2.70 GB/s)

Times for compressing/decompressing with clevel=5 and 24 threads

*** the arange linear distribution ***
  *** blosclz , noshuffle  ***  0.382 s (1.95 GB/s) / 0.300 s (2.48 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.042 s (17.77 GB/s) / 0.027 s (27.18 GB/s)   Compr. ratio:  57.1x
  *** blosclz , bitshuffle ***  0.094 s (7.94 GB/s) / 0.041 s (18.28 GB/s)    Compr. ratio:  74.0x
  *** lz4     , noshuffle  ***  0.156 s (4.79 GB/s) / 0.052 s (14.30 GB/s)    Compr. ratio:   2.0x
  *** lz4     , shuffle    ***  0.033 s (22.58 GB/s) / 0.034 s (22.03 GB/s)   Compr. ratio:  68.6x
  *** lz4     , bitshuffle ***  0.059 s (12.63 GB/s) / 0.053 s (14.18 GB/s)   Compr. ratio:  33.1x
  *** lz4hc   , noshuffle  ***  0.443 s (1.68 GB/s) / 0.070 s (10.62 GB/s)    Compr. ratio:   2.0x
  *** lz4hc   , shuffle    ***  0.102 s (7.31 GB/s) / 0.029 s (25.42 GB/s)    Compr. ratio:  97.5x
  *** lz4hc   , bitshuffle ***  0.206 s (3.62 GB/s) / 0.038 s (19.85 GB/s)    Compr. ratio: 180.5x
  *** snappy  , noshuffle  ***  0.154 s (4.84 GB/s) / 0.056 s (13.28 GB/s)    Compr. ratio:   2.0x
  *** snappy  , shuffle    ***  0.044 s (16.89 GB/s) / 0.047 s (15.95 GB/s)   Compr. ratio:  17.4x
  *** snappy  , bitshuffle ***  0.064 s (11.58 GB/s) / 0.061 s (12.26 GB/s)   Compr. ratio:  18.2x
  *** zlib    , noshuffle  ***  1.172 s (0.64 GB/s) / 0.135 s (5.50 GB/s)     Compr. ratio:   5.3x
  *** zlib    , shuffle    ***  0.260 s (2.86 GB/s) / 0.086 s (8.67 GB/s)     Compr. ratio: 120.8x
  *** zlib    , bitshuffle ***  0.262 s (2.84 GB/s) / 0.094 s (7.96 GB/s)     Compr. ratio: 260.1x
  *** zstd    , noshuffle  ***  0.973 s (0.77 GB/s) / 0.093 s (8.00 GB/s)     Compr. ratio:   7.8x
  *** zstd    , shuffle    ***  0.093 s (7.97 GB/s) / 0.023 s (32.71 GB/s)    Compr. ratio: 156.7x
  *** zstd    , bitshuffle ***  0.115 s (6.46 GB/s) / 0.029 s (25.60 GB/s)    Compr. ratio: 320.6x

*** the linspace linear distribution ***
  *** blosclz , noshuffle  ***  0.341 s (2.19 GB/s) / 0.291 s (2.56 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.132 s (5.65 GB/s) / 0.023 s (33.10 GB/s)    Compr. ratio:   2.0x
  *** blosclz , bitshuffle ***  0.166 s (4.50 GB/s) / 0.036 s (20.89 GB/s)    Compr. ratio:   2.8x
  *** lz4     , noshuffle  ***  0.142 s (5.26 GB/s) / 0.028 s (27.07 GB/s)    Compr. ratio:   1.0x
  *** lz4     , shuffle    ***  0.093 s (8.01 GB/s) / 0.030 s (24.87 GB/s)    Compr. ratio:   3.4x
  *** lz4     , bitshuffle ***  0.102 s (7.31 GB/s) / 0.039 s (19.13 GB/s)    Compr. ratio:   5.3x
  *** lz4hc   , noshuffle  ***  0.700 s (1.06 GB/s) / 0.044 s (16.77 GB/s)    Compr. ratio:   1.1x
  *** lz4hc   , shuffle    ***  0.203 s (3.67 GB/s) / 0.021 s (36.22 GB/s)    Compr. ratio:   8.6x
  *** lz4hc   , bitshuffle ***  0.342 s (2.18 GB/s) / 0.028 s (26.50 GB/s)    Compr. ratio:  14.2x
  *** snappy  , noshuffle  ***  0.271 s (2.75 GB/s) / 0.274 s (2.72 GB/s)     Compr. ratio:   1.0x
  *** snappy  , shuffle    ***  0.099 s (7.54 GB/s) / 0.042 s (17.55 GB/s)    Compr. ratio:   4.2x
  *** snappy  , bitshuffle ***  0.127 s (5.86 GB/s) / 0.043 s (17.20 GB/s)    Compr. ratio:   6.1x
  *** zlib    , noshuffle  ***  1.525 s (0.49 GB/s) / 0.158 s (4.70 GB/s)     Compr. ratio:   1.6x
  *** zlib    , shuffle    ***  0.346 s (2.15 GB/s) / 0.098 s (7.59 GB/s)     Compr. ratio:  10.7x
  *** zlib    , bitshuffle ***  0.420 s (1.78 GB/s) / 0.104 s (7.20 GB/s)     Compr. ratio:  18.0x
  *** zstd    , noshuffle  ***  1.061 s (0.70 GB/s) / 0.096 s (7.79 GB/s)     Compr. ratio:   1.9x
  *** zstd    , shuffle    ***  0.203 s (3.68 GB/s) / 0.052 s (14.21 GB/s)    Compr. ratio:  14.2x
  *** zstd    , bitshuffle ***  0.251 s (2.97 GB/s) / 0.047 s (15.84 GB/s)    Compr. ratio:  22.2x

*** the random distribution ***
  *** blosclz , noshuffle  ***  0.340 s (2.19 GB/s) / 0.285 s (2.61 GB/s)     Compr. ratio:   1.0x
  *** blosclz , shuffle    ***  0.091 s (8.21 GB/s) / 0.017 s (44.29 GB/s)    Compr. ratio:   3.9x
  *** blosclz , bitshuffle ***  0.080 s (9.27 GB/s) / 0.029 s (26.12 GB/s)    Compr. ratio:   6.1x
  *** lz4     , noshuffle  ***  0.150 s (4.95 GB/s) / 0.027 s (28.05 GB/s)    Compr. ratio:   2.4x
  *** lz4     , shuffle    ***  0.068 s (11.02 GB/s) / 0.029 s (26.03 GB/s)   Compr. ratio:   4.5x
  *** lz4     , bitshuffle ***  0.063 s (11.87 GB/s) / 0.054 s (13.70 GB/s)   Compr. ratio:   6.2x
  *** lz4hc   , noshuffle  ***  0.645 s (1.15 GB/s) / 0.019 s (39.22 GB/s)    Compr. ratio:   3.5x
  *** lz4hc   , shuffle    ***  0.257 s (2.90 GB/s) / 0.022 s (34.62 GB/s)    Compr. ratio:   5.1x
  *** lz4hc   , bitshuffle ***  0.128 s (5.80 GB/s) / 0.029 s (25.52 GB/s)    Compr. ratio:   6.2x
  *** snappy  , noshuffle  ***  0.164 s (4.54 GB/s) / 0.048 s (15.46 GB/s)    Compr. ratio:   2.2x
  *** snappy  , shuffle    ***  0.082 s (9.09 GB/s) / 0.043 s (17.39 GB/s)    Compr. ratio:   4.3x
  *** snappy  , bitshuffle ***  0.071 s (10.48 GB/s) / 0.046 s (16.08 GB/s)   Compr. ratio:   5.0x
  *** zlib    , noshuffle  ***  1.223 s (0.61 GB/s) / 0.093 s (7.97 GB/s)     Compr. ratio:   4.0x
  *** zlib    , shuffle    ***  0.636 s (1.17 GB/s) / 0.126 s (5.89 GB/s)     Compr. ratio:   5.5x
  *** zlib    , bitshuffle ***  0.327 s (2.28 GB/s) / 0.109 s (6.81 GB/s)     Compr. ratio:   6.2x
  *** zstd    , noshuffle  ***  1.432 s (0.52 GB/s) / 0.103 s (7.27 GB/s)     Compr. ratio:   4.2x
  *** zstd    , shuffle    ***  0.388 s (1.92 GB/s) / 0.031 s (23.71 GB/s)    Compr. ratio:   5.9x
  *** zstd    , bitshuffle ***  0.127 s (5.86 GB/s) / 0.033 s (22.77 GB/s)    Compr. ratio:   6.4x

Also, Blosc works quite well on ARM processors (even without NEON support yet):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.4.4
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
  BloscLZ: 1.0.5
  LZ4: 1.7.5
  Snappy: 1.1.1
  Zlib: 1.2.8
  Zstd: 1.1.2
Python version: 3.6.0 (default, Dec 31 2016, 21:20:16)
[GCC 4.9.2]
Platform: Linux-3.4.113-sun8i-armv7l (#50 SMP PREEMPT Mon Nov 14 08:41:55 CET 2016)
Linux dist: debian 9.0
Processor: not recognized
Byte-ordering: little
Detected cores: 4
Number of threads to use by default: 4
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
  *** ctypes.memmove() *** Time for memcpy():   0.015 s (93.57 MB/s)

Times for compressing/decompressing with clevel=5 and 4 threads

*** user input ***
  *** blosclz , noshuffle  ***  0.015 s (89.93 MB/s) / 0.010 s (138.32 MB/s)    Compr. ratio:   2.7x
  *** blosclz , shuffle    ***  0.023 s (60.25 MB/s) / 0.012 s (112.71 MB/s)    Compr. ratio:   2.3x
  *** blosclz , bitshuffle ***  0.018 s (77.63 MB/s) / 0.021 s (66.76 MB/s)     Compr. ratio:   7.3x
  *** lz4     , noshuffle  ***  0.008 s (177.14 MB/s) / 0.009 s (159.00 MB/s)   Compr. ratio:   3.6x
  *** lz4     , shuffle    ***  0.010 s (131.29 MB/s) / 0.012 s (117.69 MB/s)   Compr. ratio:   3.5x
  *** lz4     , bitshuffle ***  0.015 s (89.97 MB/s) / 0.022 s (63.62 MB/s)     Compr. ratio:   8.4x
  *** lz4hc   , noshuffle  ***  0.071 s (19.30 MB/s) / 0.007 s (186.64 MB/s)    Compr. ratio:   8.6x
  *** lz4hc   , shuffle    ***  0.079 s (17.30 MB/s) / 0.014 s (95.99 MB/s)     Compr. ratio:   6.2x
  *** lz4hc   , bitshuffle ***  0.062 s (22.23 MB/s) / 0.027 s (51.53 MB/s)     Compr. ratio:   9.7x
  *** snappy  , noshuffle  ***  0.008 s (173.87 MB/s) / 0.009 s (148.77 MB/s)   Compr. ratio:   4.4x
  *** snappy  , shuffle    ***  0.011 s (123.22 MB/s) / 0.016 s (85.16 MB/s)    Compr. ratio:   4.4x
  *** snappy  , bitshuffle ***  0.015 s (89.02 MB/s) / 0.021 s (64.87 MB/s)     Compr. ratio:   6.2x
  *** zlib    , noshuffle  ***  0.047 s (29.26 MB/s) / 0.011 s (121.83 MB/s)    Compr. ratio:  14.7x
  *** zlib    , shuffle    ***  0.080 s (17.20 MB/s) / 0.022 s (63.61 MB/s)     Compr. ratio:   9.4x
  *** zlib    , bitshuffle ***  0.059 s (23.50 MB/s) / 0.033 s (41.10 MB/s)     Compr. ratio:  10.5x
  *** zstd    , noshuffle  ***  0.113 s (12.21 MB/s) / 0.011 s (124.64 MB/s)    Compr. ratio:  15.6x
  *** zstd    , shuffle    ***  0.154 s (8.92 MB/s) / 0.026 s (52.56 MB/s)      Compr. ratio:   9.9x
  *** zstd    , bitshuffle ***  0.116 s (11.86 MB/s) / 0.036 s (38.40 MB/s)     Compr. ratio:  11.4x

For details on the ARM benchmark see: https://github.com/Blosc/python-blosc/issues/105

In case you find your own results interesting, please report them back to the authors!

License

The software is licenses under a 3-Clause BSD licsense. A copy of the python-blosc license can be found in LICENSE.txt. A copy of all licenses can be found in LICENSES/.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

http://groups.google.es/group/blosc


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc-1.9.3.dev0.tar.gz (612.8 kB view details)

Uploaded Source

Built Distributions

blosc-1.9.3.dev0-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc-1.9.3.dev0-cp39-cp39-win32.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86

blosc-1.9.3.dev0-cp39-cp39-manylinux2010_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

blosc-1.9.3.dev0-cp39-cp39-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

blosc-1.9.3.dev0-cp39-cp39-manylinux1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9

blosc-1.9.3.dev0-cp39-cp39-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.9

blosc-1.9.3.dev0-cp39-cp39-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc-1.9.3.dev0-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc-1.9.3.dev0-cp38-cp38-win32.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86

blosc-1.9.3.dev0-cp38-cp38-manylinux2010_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

blosc-1.9.3.dev0-cp38-cp38-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

blosc-1.9.3.dev0-cp38-cp38-manylinux1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8

blosc-1.9.3.dev0-cp38-cp38-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.8

blosc-1.9.3.dev0-cp38-cp38-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

blosc-1.9.3.dev0-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

blosc-1.9.3.dev0-cp37-cp37m-win32.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86

blosc-1.9.3.dev0-cp37-cp37m-manylinux2010_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

blosc-1.9.3.dev0-cp37-cp37m-manylinux2010_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

blosc-1.9.3.dev0-cp37-cp37m-manylinux1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m

blosc-1.9.3.dev0-cp37-cp37m-manylinux1_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m

blosc-1.9.3.dev0-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file blosc-1.9.3.dev0.tar.gz.

File metadata

  • Download URL: blosc-1.9.3.dev0.tar.gz
  • Upload date:
  • Size: 612.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0.tar.gz
Algorithm Hash digest
SHA256 1fbbc499b877b1d3bf2c6b98dc4ac9b267d224681725d6f44cae19ff52d54b5f
MD5 66ac59674bb00548bdaf220f9ef6ed74
BLAKE2b-256 93de620276d9d9b7c09ca42873d279cde7ad1989b3820cb5006f839d1b76b920

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cbf6f7339368276bd1be2efc7ce198def9adf55a03ee75417003854bed115be7
MD5 bffb34998f0bd6ed5dbe7f106ba8adf1
BLAKE2b-256 4b611168cd02a17ced4a72a4aa03b0e57637533a121bc94fd7008f71255ab415

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 469bd19aa22b5628464c6ad9a2cf724b43bca1d7adcb20a48c6cddae26679379
MD5 af2a371546fd492d2b4e4c50cdb8bd20
BLAKE2b-256 2cc6d736186ea9b68a15762dfc16f6ae9dc9f8a7214419becf815287ae1223b6

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d00105162157aefc90f1a70a5f0b45aa53840e3fa7048071e00cd9c2057e2f17
MD5 622b3d3e61f484f6d0fe6d54df6500f3
BLAKE2b-256 bf9005b6165955da595a9066cea0fa515f90c87dd9d36a4aed3d0dad14e8cd59

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3576e5cd3c878ebe70bdc9d1326730fd1c0cc9f13d20e81337a64689861aa025
MD5 17c2e8b07abbb9d74e567a38fb97a02b
BLAKE2b-256 1f8c146e64965d299003db130ea1b93e7d4eb9975a8419babdfd75b086c50846

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2c0f63b3cdb8225130ab9b7efcf045f17f34f711b814f4a14ebd4d522695fb68
MD5 fd72c4359901c93b2a7e3d480f54d5e1
BLAKE2b-256 e18ab8250fbea89fd73e9400350011490a3712233f01e792d08d2e00047b27c3

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b3b1037d517baa0cea4b1068998936a750780806b1eee030487579be021ab827
MD5 279fe134028ce70ba23737dbf2b9ace8
BLAKE2b-256 6de81d607f17ab05650c5c270a8d98d71fc6febbbe6afd34588d790eb754b724

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8779fc2546296ccf6b16842a79733d56f837e3e0619f15a67a2ad914bf5d76dd
MD5 1f3dd1abfefe961e98a23a05c62679a9
BLAKE2b-256 fc29638bfe3592c7fd0bd0c084478712bd41754c77b424cc12c213c8289aa2e8

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1d04d69aff7ac046c265c0c7c9a27caf145d8b93bf390adf4276bc3792a06625
MD5 ddaa6266d46c6ae01f72a7f174eb374a
BLAKE2b-256 ee26ba79445f686277107ad29aa28717bf7c9e54f6fea60913c9209699149432

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp38-cp38-win32.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c9c26fa4045f107462a257357f2dce1d20802cc6d40dfab3ac61526c9b0ee77b
MD5 1fc6d08b84417017f4ed64e0635862e2
BLAKE2b-256 75bb2a7bcc06d43e309b608dee8451640fc89e875021ab76d2f5cb3ebc64b2f9

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4b32aed8fab063b1262aea98b51513ad805036f2982b659bc2c341651ac72dcf
MD5 c90c8136358850b51cec4fd7037b2c60
BLAKE2b-256 96dacda4e5497cb75c3b0926e81635c1995eef48acef5a021032eacc50b6d629

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ab3790faeea1c52bc52d88b90b2169bd8ae74b8e893e728db4e50dd01821a7d8
MD5 3c4f5a33649f06cfedcd6942a0b7ec66
BLAKE2b-256 67fce5528a1c621c82a562ab1769c93ab57d67d8c1f54cc837f662ee638e9df3

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9b5437a54b06f843f4666cef3018a8104ee5243b19ecb08109476d0ce7ba9974
MD5 74247f00cfcd331275eaeed1c8a75f42
BLAKE2b-256 624acdb134ad152e986bd842587cf75a50b94d0a22c0aaf5b2098104fef02212

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c8b3a6688eb16fa3075265f1da63e8abf406851d5fa7bb35a30dff180bc923d0
MD5 c86d06802f584a22238dfe76d6a910d8
BLAKE2b-256 f3969a37d859a93280f767ad4d662ff92c4386efe32416d9ab05ff6be3a3e083

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c1d6dc46b88479d031e9f6c01d510a8a4d7d1a6e799273283f8c5712c76daa82
MD5 36ca86b34fabf17f1ebc848acbd97726
BLAKE2b-256 f77483c56251fae4c9c20495d7445d3fb04c6181641034e3f97e0e5694696459

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4fdde05f095a69a483cb4e9d1e215b828c283a052e70b4586174a7e176d1319d
MD5 cdee747c3f4461a33224a20f08f14606
BLAKE2b-256 3de98617142655b1203a04f9628b9648396875843912c559e61ec29e47e3eff8

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3aaadef0dd137a02f364575597cfb5c09818fc7c3184d8920154ed5fa538a70d
MD5 fed02517c6e9db25cfa61c1b79130501
BLAKE2b-256 4655f0ce03ebf9012b6800a2cd1a9de1fcb7602f6288c7d3ddacff530028ec53

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c80c72732b7b368915cf09fc0a5e36778824f03fb09c696ff75d35c5def9a28c
MD5 d27d67d899e039fdd3fd57943af6a0f1
BLAKE2b-256 2384c0d14d2c672dc14a442e66618d5e3d334a632d6a6e663006db1edc2c714f

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 fad5655e86bb627412fd10951f1e6d8bfb1b391bca8c766812687f7adf23f93f
MD5 9bfcb275fce72f04b6a47f55898b0df4
BLAKE2b-256 e055185d900a0a343bad1b2b8fd8b094f8c73795604fd9bc72c6de7e19636d8b

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 03ec2224fe7ec7307093f5be4e02819e207cfe306c2f7b3ed8d3941f272c1aa6
MD5 148c25348c570b15e9a4e2805627ecf7
BLAKE2b-256 ebb04ae5bb96ee2929cdd42ead01cd94e5b1abeaa66f596cbb44f230e93ec015

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c7938c5dd93fb08d65320ca4dd68bd4a4871ee54bb634b22d7c6b9626a04b305
MD5 e517de3ecc6bd285f5815013ad180a4d
BLAKE2b-256 ec62645b1627f65b6819e6132c57fe5a77f15a1b494244ab5771cfe59cb0833b

See more details on using hashes here.

File details

Details for the file blosc-1.9.3.dev0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: blosc-1.9.3.dev0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for blosc-1.9.3.dev0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8478088f98df055ab1ba41d68a959ca810b384c9c383681a0fca4ce7dbeca464
MD5 c5dead58639b5d2825a3f6566f109b49
BLAKE2b-256 e5b4a8f2b2feca7ab7c17d9a46772b33c67efdb481500644bca9f6faacf8da4d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page