Skip to main content

Python wrapper for the C-Blosc2 library.

Project description

Author:

The Blosc development team

Contact:
blosc@blosc.org
Github:

https://github.com/Blosc/python-blosc2

PyPi:

version

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (http://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor. Currently python-blosc2 already reproduces the API of python-blosc, so the former can be used as a drop-in replacement for the later. However, there are a few exceptions for the complete compatibility that are listed here: https://github.com/Blosc/python-blosc2/blob/main/RELEASE_NOTES.md#changes-from-python-blosc-to-python-blosc2

In addition, python-blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, serialization and all the features introduced in C-Blosc2. This is work in process and will be done incrementally in future releases.

Note: python-blosc2 is meant to be backward compatible with python-blosc data. That means that it can read data generated with python-blosc, but the opposite is not true (i.e. there is no forward compatibility).

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://python-blosc2.readthedocs.io/en/latest/

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building

python-blosc2 comes with the Blosc sources with it and can be built with:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/compress_numpy.py

Just to whet your appetite, here are some speed figures for an Intel box (i9-10940X @ 3.30GHz) with 64 GB RAM running Clear Linux:

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc2 version: 0.1.7
Blosc version: 2.0.0.rc2 ($Date:: 2021-05-26 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'zlib', 'zstd']
Compressor library versions:
  blosclz: 2.4.0
  lz4: 1.9.3
  lz4hc: 1.9.3
  zlib: 1.2.11.zlib-ng
  zstd: 1.5.0
Python version: 3.7.9 (default, Aug 31 2020, 12:42:55)
[GCC 7.3.0]
Platform: Linux-5.12.6-1043.native-x86_64 (#1 SMP Sat May 22 04:04:10 PDT 2021)
Linux dist: Clear Linux OS
Processor: not recognized
Byte-ordering: little
Detected cores: 28
Number of threads to use by default: 8
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** np.copyto() *** Time for memcpy():    0.083 s (8.93 GB/s)

Times for compressing/decompressing:

*** the arange linear distribution ***
  *** blosclz, noshuffle  ***  0.219 s (3.41 GB/s) / 0.083 s (8.93 GB/s)    cr:   2.0x
  *** blosclz, shuffle    ***  0.027 s (27.26 GB/s) / 0.035 s (21.38 GB/s)  cr: 469.7x
  *** blosclz, bitshuffle ***  0.078 s (9.56 GB/s) / 0.135 s (5.53 GB/s)    cr: 488.2x
  *** lz4    , noshuffle  ***  0.223 s (3.33 GB/s) / 0.075 s (9.92 GB/s)    cr:   2.0x
  *** lz4    , shuffle    ***  0.025 s (29.69 GB/s) / 0.035 s (21.18 GB/s)  cr: 279.2x
  *** lz4    , bitshuffle ***  0.079 s (9.43 GB/s) / 0.138 s (5.40 GB/s)    cr:  87.7x
  *** lz4hc  , noshuffle  ***  1.273 s (0.59 GB/s) / 0.076 s (9.85 GB/s)    cr:   2.0x
  *** lz4hc  , shuffle    ***  0.108 s (6.87 GB/s) / 0.032 s (23.37 GB/s)   cr: 155.9x
  *** lz4hc  , bitshuffle ***  0.359 s (2.08 GB/s) / 0.037 s (19.88 GB/s)   cr: 239.5x
  *** zlib   , noshuffle  ***  2.732 s (0.27 GB/s) / 0.146 s (5.09 GB/s)    cr:   5.3x
  *** zlib   , shuffle    ***  0.129 s (5.78 GB/s) / 0.046 s (16.11 GB/s)   cr: 273.8x
  *** zlib   , bitshuffle ***  0.179 s (4.17 GB/s) / 0.058 s (12.78 GB/s)   cr: 457.9x
  *** zstd   , noshuffle  ***  1.912 s (0.39 GB/s) / 0.113 s (6.61 GB/s)    cr:   7.9x
  *** zstd   , shuffle    ***  0.223 s (3.34 GB/s) / 0.031 s (24.18 GB/s)   cr: 644.9x
  *** zstd   , bitshuffle ***  0.242 s (3.07 GB/s) / 0.038 s (19.61 GB/s)   cr: 985.6x

*** the linspace linear distribution ***
  *** blosclz, noshuffle  ***  0.099 s (7.55 GB/s) / 0.031 s (23.76 GB/s)   cr:   1.0x
  *** blosclz, shuffle    ***  0.050 s (15.02 GB/s) / 0.036 s (20.98 GB/s)  cr:  33.5x
  *** blosclz, bitshuffle ***  0.087 s (8.53 GB/s) / 0.147 s (5.08 GB/s)    cr:  55.4x
  *** lz4    , noshuffle  ***  0.085 s (8.77 GB/s) / 0.031 s (23.86 GB/s)   cr:   1.0x
  *** lz4    , shuffle    ***  0.038 s (19.53 GB/s) / 0.034 s (21.78 GB/s)  cr:  40.5x
  *** lz4    , bitshuffle ***  0.081 s (9.24 GB/s) / 0.146 s (5.09 GB/s)    cr:  59.5x
  *** lz4hc  , noshuffle  ***  1.902 s (0.39 GB/s) / 0.075 s (9.92 GB/s)    cr:   1.1x
  *** lz4hc  , shuffle    ***  0.237 s (3.14 GB/s) / 0.031 s (24.09 GB/s)   cr:  44.7x
  *** lz4hc  , bitshuffle ***  0.438 s (1.70 GB/s) / 0.035 s (21.03 GB/s)   cr:  58.0x
  *** zlib   , noshuffle  ***  2.078 s (0.36 GB/s) / 0.267 s (2.79 GB/s)    cr:   1.6x
  *** zlib   , shuffle    ***  0.239 s (3.11 GB/s) / 0.053 s (13.98 GB/s)   cr:  44.6x
  *** zlib   , bitshuffle ***  0.275 s (2.71 GB/s) / 0.065 s (11.45 GB/s)   cr:  66.9x
  *** zstd   , noshuffle  ***  2.792 s (0.27 GB/s) / 0.099 s (7.55 GB/s)    cr:   1.2x
  *** zstd   , shuffle    ***  0.374 s (1.99 GB/s) / 0.037 s (20.18 GB/s)   cr:  70.5x
  *** zstd   , bitshuffle ***  0.367 s (2.03 GB/s) / 0.053 s (14.10 GB/s)   cr:  51.2x

*** the random distribution ***
  *** blosclz, noshuffle  ***  0.245 s (3.04 GB/s) / 0.105 s (7.12 GB/s)    cr:   2.1x
  *** blosclz, shuffle    ***  0.098 s (7.59 GB/s) / 0.038 s (19.56 GB/s)   cr:   4.0x
  *** blosclz, bitshuffle ***  0.163 s (4.57 GB/s) / 0.139 s (5.35 GB/s)    cr:   4.0x
  *** lz4    , noshuffle  ***  0.240 s (3.10 GB/s) / 0.040 s (18.65 GB/s)   cr:   2.1x
  *** lz4    , shuffle    ***  0.109 s (6.83 GB/s) / 0.039 s (19.28 GB/s)   cr:   4.0x
  *** lz4    , bitshuffle ***  0.144 s (5.18 GB/s) / 0.139 s (5.35 GB/s)    cr:   4.6x
  *** lz4hc  , noshuffle  ***  1.222 s (0.61 GB/s) / 0.035 s (21.25 GB/s)   cr:   2.8x
  *** lz4hc  , shuffle    ***  0.453 s (1.65 GB/s) / 0.038 s (19.66 GB/s)   cr:   4.0x
  *** lz4hc  , bitshuffle ***  0.419 s (1.78 GB/s) / 0.041 s (17.97 GB/s)   cr:   4.5x
  *** zlib   , noshuffle  ***  4.050 s (0.18 GB/s) / 0.208 s (3.58 GB/s)    cr:   3.2x
  *** zlib   , shuffle    ***  0.654 s (1.14 GB/s) / 0.074 s (10.06 GB/s)   cr:   4.7x
  *** zlib   , bitshuffle ***  0.610 s (1.22 GB/s) / 0.078 s (9.51 GB/s)    cr:   4.6x
  *** zstd   , noshuffle  ***  2.214 s (0.34 GB/s) / 0.125 s (5.95 GB/s)    cr:   4.0x
  *** zstd   , shuffle    ***  0.874 s (0.85 GB/s) / 0.039 s (19.01 GB/s)   cr:   4.4x
  *** zstd   , bitshuffle ***  0.858 s (0.87 GB/s) / 0.054 s (13.71 GB/s)   cr:   4.6x

For the matter of comparision, here are the results for an ARM box; an Apple MacBook Air M1 (2021) with 8 GB of RAM:

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc2 version: 0.1.6.dev0
Blosc version: 2.0.0.rc2 ($Date:: 2021-05-26 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'zlib', 'zstd']
Compressor library versions:
  blosclz: 2.4.0
  lz4: 1.9.3
  lz4hc: 1.9.3
  zlib: 1.2.11.zlib-ng
  zstd: 1.5.0
Python version: 3.9.5 (default, May  3 2021, 19:12:05)
[Clang 12.0.5 (clang-1205.0.22.9)]
Platform: Darwin-20.4.0-arm64 (Darwin Kernel Version 20.4.0: Fri Mar  5 01:14:02 PST 2021; root:xnu-7195.101.1~3/RELEASE_ARM64_T8101)
Processor: arm
Byte-ordering: little
Detected cores: 8
Number of threads to use by default: 8
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** np.copyto() *** Time for memcpy():    0.030 s (25.04 GB/s)

Times for compressing/decompressing:

*** the arange linear distribution ***
  *** blosclz, noshuffle  ***  0.253 s (2.95 GB/s) / 0.109 s (6.83 GB/s)    cr:   2.0x
  *** blosclz, shuffle    ***  0.036 s (20.44 GB/s) / 0.024 s (31.08 GB/s)  cr: 469.7x
  *** blosclz, bitshuffle ***  0.123 s (6.04 GB/s) / 0.238 s (3.13 GB/s)    cr: 488.2x
  *** lz4    , noshuffle  ***  0.332 s (2.24 GB/s) / 0.072 s (10.39 GB/s)   cr:   2.0x
  *** lz4    , shuffle    ***  0.035 s (21.18 GB/s) / 0.030 s (24.93 GB/s)  cr: 279.2x
  *** lz4    , bitshuffle ***  0.126 s (5.91 GB/s) / 0.239 s (3.12 GB/s)    cr:  87.7x
  *** lz4hc  , noshuffle  ***  2.365 s (0.32 GB/s) / 0.080 s (9.35 GB/s)    cr:   2.0x
  *** lz4hc  , shuffle    ***  0.136 s (5.48 GB/s) / 0.047 s (15.89 GB/s)   cr: 155.9x
  *** lz4hc  , bitshuffle ***  0.545 s (1.37 GB/s) / 0.168 s (4.42 GB/s)    cr: 239.5x
  *** zlib   , noshuffle  ***  4.875 s (0.15 GB/s) / 0.279 s (2.67 GB/s)    cr:   5.3x
  *** zlib   , shuffle    ***  0.213 s (3.50 GB/s) / 0.091 s (8.20 GB/s)    cr: 273.8x
  *** zlib   , bitshuffle ***  0.344 s (2.16 GB/s) / 0.213 s (3.50 GB/s)    cr: 457.9x
  *** zstd   , noshuffle  ***  2.961 s (0.25 GB/s) / 0.168 s (4.44 GB/s)    cr:   7.9x
  *** zstd   , shuffle    ***  0.265 s (2.82 GB/s) / 0.035 s (21.46 GB/s)   cr: 644.9x
  *** zstd   , bitshuffle ***  0.392 s (1.90 GB/s) / 0.158 s (4.73 GB/s)    cr: 985.6x

*** the linspace linear distribution ***
  *** blosclz, noshuffle  ***  0.372 s (2.00 GB/s) / 0.029 s (25.42 GB/s)   cr:   1.0x
  *** blosclz, shuffle    ***  0.065 s (11.46 GB/s) / 0.035 s (21.13 GB/s)  cr:  33.5x
  *** blosclz, bitshuffle ***  0.148 s (5.03 GB/s) / 0.250 s (2.98 GB/s)    cr:  55.4x
  *** lz4    , noshuffle  ***  0.109 s (6.84 GB/s) / 0.037 s (19.89 GB/s)   cr:   1.0x
  *** lz4    , shuffle    ***  0.052 s (14.27 GB/s) / 0.038 s (19.65 GB/s)  cr:  40.5x
  *** lz4    , bitshuffle ***  0.138 s (5.42 GB/s) / 0.250 s (2.99 GB/s)    cr:  59.5x
  *** lz4hc  , noshuffle  ***  3.962 s (0.19 GB/s) / 0.070 s (10.61 GB/s)   cr:   1.1x
  *** lz4hc  , shuffle    ***  0.366 s (2.04 GB/s) / 0.037 s (19.99 GB/s)   cr:  44.7x
  *** lz4hc  , bitshuffle ***  0.764 s (0.97 GB/s) / 0.159 s (4.69 GB/s)    cr:  58.0x
  *** zlib   , noshuffle  ***  3.290 s (0.23 GB/s) / 0.502 s (1.49 GB/s)    cr:   1.6x
  *** zlib   , shuffle    ***  0.403 s (1.85 GB/s) / 0.103 s (7.23 GB/s)    cr:  44.6x
  *** zlib   , bitshuffle ***  0.533 s (1.40 GB/s) / 0.228 s (3.27 GB/s)    cr:  66.9x
  *** zstd   , noshuffle  ***  3.747 s (0.20 GB/s) / 0.192 s (3.89 GB/s)    cr:   1.2x
  *** zstd   , shuffle    ***  0.483 s (1.54 GB/s) / 0.057 s (13.17 GB/s)   cr:  70.5x
  *** zstd   , bitshuffle ***  0.634 s (1.17 GB/s) / 0.204 s (3.65 GB/s)    cr:  51.2x

*** the random distribution ***
  *** blosclz, noshuffle  ***  0.410 s (1.82 GB/s) / 0.135 s (5.50 GB/s)    cr:   2.1x
  *** blosclz, shuffle    ***  0.087 s (8.53 GB/s) / 0.029 s (25.29 GB/s)   cr:   4.0x
  *** blosclz, bitshuffle ***  0.169 s (4.40 GB/s) / 0.236 s (3.15 GB/s)    cr:   4.0x
  *** lz4    , noshuffle  ***  0.359 s (2.08 GB/s) / 0.060 s (12.50 GB/s)   cr:   2.1x
  *** lz4    , shuffle    ***  0.075 s (9.88 GB/s) / 0.029 s (25.40 GB/s)   cr:   4.0x
  *** lz4    , bitshuffle ***  0.155 s (4.81 GB/s) / 0.239 s (3.12 GB/s)    cr:   4.6x
  *** lz4hc  , noshuffle  ***  2.053 s (0.36 GB/s) / 0.045 s (16.71 GB/s)   cr:   2.8x
  *** lz4hc  , shuffle    ***  0.797 s (0.93 GB/s) / 0.051 s (14.63 GB/s)   cr:   4.0x
  *** lz4hc  , bitshuffle ***  0.795 s (0.94 GB/s) / 0.177 s (4.21 GB/s)    cr:   4.5x
  *** zlib   , noshuffle  ***  5.562 s (0.13 GB/s) / 0.367 s (2.03 GB/s)    cr:   3.2x
  *** zlib   , shuffle    ***  0.934 s (0.80 GB/s) / 0.148 s (5.03 GB/s)    cr:   4.7x
  *** zlib   , bitshuffle ***  0.959 s (0.78 GB/s) / 0.262 s (2.85 GB/s)    cr:   4.6x
  *** zstd   , noshuffle  ***  3.841 s (0.19 GB/s) / 0.228 s (3.27 GB/s)    cr:   4.0x
  *** zstd   , shuffle    ***  1.078 s (0.69 GB/s) / 0.069 s (10.76 GB/s)   cr:   4.4x
  *** zstd   , bitshuffle ***  1.044 s (0.71 GB/s) / 0.201 s (3.71 GB/s)    cr:   4.6x

As can be seen, is perfectly possible for python-blosc2 to go faster than a plain memcpy().

Start using compression in your data workflows and feel the experience of doing more with less!

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE. A copy of all licenses can be found in LICENSES/.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

http://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-0.3.0.tar.gz (2.4 MB view details)

Uploaded Source

Built Distributions

blosc2-0.3.0-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-0.3.0-cp310-cp310-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc2-0.3.0-cp310-cp310-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

blosc2-0.3.0-cp310-cp310-musllinux_1_1_aarch64.whl (3.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

blosc2-0.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-0.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

blosc2-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-0.3.0-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-0.3.0-cp39-cp39-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc2-0.3.0-cp39-cp39-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

blosc2-0.3.0-cp39-cp39-musllinux_1_1_aarch64.whl (3.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

blosc2-0.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-0.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc2-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc2-0.3.0-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc2-0.3.0-cp38-cp38-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

blosc2-0.3.0-cp38-cp38-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

blosc2-0.3.0-cp38-cp38-musllinux_1_1_aarch64.whl (3.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

blosc2-0.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

blosc2-0.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

blosc2-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file blosc2-0.3.0.tar.gz.

File metadata

  • Download URL: blosc2-0.3.0.tar.gz
  • Upload date:
  • Size: 2.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for blosc2-0.3.0.tar.gz
Algorithm Hash digest
SHA256 75735e4792407870dcce9d9ebea2fe9fa2789404dc4e5001fb4f53e197fe0823
MD5 3fe30346a6756b9d83c80a24be62a3fa
BLAKE2b-256 cfca729f6ddaf7444adc0255e6e585a2c701cebf49107e2ad0310e176496d8cc

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.3.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for blosc2-0.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a31a28bad8d05da8873dbb147e495f324411c4c820d42d67a54be1ddb15942f7
MD5 e540ba848ae0149f5a0a63e8b0c9c70c
BLAKE2b-256 e061852185f150637c1a5c6fb78f50a0292a3b12d62d1e6f15092ead0ce0ca84

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 79231dd8ae7f0aab0698fe89ad4703a0e934e26da92f709c7d47dad0fa2ceebc
MD5 8c1ed9140121a343e25299b8c9bce97b
BLAKE2b-256 1c7089299e1373a2a60307805c2ce3c1ca5823d748dd618a7f2ec3cac2486dae

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fe77894f700cc0b274e5f3424767f58fe345ea9dd40ee8be488019974a1137a5
MD5 c05ff7bc7eff9a7fb5abff50118550a8
BLAKE2b-256 abdc38ba58fd355ea770dbdcd8dd98d72b1c29bc1a9ac3bcfbc2be65781fd9aa

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1d0f94bbe3e6cade4f97837e9ef32c1da38c54979d7e4f1fe0150096a5872451
MD5 a4d69724716a99e6ada17a352c3e9d08
BLAKE2b-256 b1023387f7aa4b0479b6271b967a4c9bbba581c999c64781c1d57976480957af

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6749c83d3e77c8690f21649442fb86cf29fad812712f35cb35950c775f0300e0
MD5 9b6cb878ed8cc521eeffd28ee4275fff
BLAKE2b-256 fb2520f1a4c3f05e33cfd6c5acb1212cde0cf7b6b00493d17428e7b70047d97c

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5398ee17808b7002b712c123e361de2c49f6c96bb5f174f7e26dab3ae9735ad9
MD5 d9df44fdfb9fbf94a0e161bd2c2e6a4b
BLAKE2b-256 538d8535a458a5910dba96d9891912552159ba6b5234e536ecd00204c8002fb4

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 33625d0a6da9ba52d829bd8a19e9a63ff34222167d0184e12c5c36245b120d9c
MD5 4ec3bab27685b7559f321573744bc2bd
BLAKE2b-256 dfb29db5ef1df3e398fb261ceda2723672cbd3827382dbf581b874f8ecdee411

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for blosc2-0.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 acc575919d956e184c98aab0b65e086b11eec303c449fa4d2cc36529eddf0af1
MD5 9885d3cc0cb5d113f774e078adddffd2
BLAKE2b-256 8ae27bdf1703ab6daf2ab3d2b3b2aa224a55471c5f5177dd01125acc3d03d0ed

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bb28009b54fc93f46eb40858609628a9d27f2889a7dfa0bfc38e974823476050
MD5 93ae5c2099d7a63dc08dcc19937c8b07
BLAKE2b-256 2b5bafda2d4c9b9df612574ffa179819ddc12ebb164363ce1223faa26acf0467

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 22da5c7d72ab7ea44a3abf19ec9dc313d11e0c64ccacc12bab5f8df811cdf4ef
MD5 964625ebb2d58f05bf86b6b044d50346
BLAKE2b-256 5a242f2eeedfe7cfa229a3f300ebad8779749c4b41a130df08c1b8f3ba71ce9a

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e02bc34ec287fd9454aa2b72f3d19d7054227609fc813304c710379b628e3ba7
MD5 7117f9e8c1a54fb8a0b073707098f07e
BLAKE2b-256 7a48a908e0295cc04017764cf0e2242829366d51dc7f4b3357e4fee8d11a2d3c

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e6d0b5e24c03e5c877aac57f5f3a7e04ca24139a9cd92eba9090a06588fb722
MD5 700c270f3d0685fea8b7a8bdff9b5cb3
BLAKE2b-256 107483641cc6355bfbc914ed473937513e98d9e80a28dc937831de58af68f0d7

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6c28f57fa6278dc40bfb23aa9b5ef0b54753cf7ea749edd4227dc555323c4569
MD5 02162fefc0c16defa4ff23ac3582217a
BLAKE2b-256 1a83c235af7ad7c7e80d10378885cab7cdccb9d11ff56c56d6d434039f140e2c

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 277b97279bcdd71930322d37aaa45fc0d21cec1b35dd406785eda4efb7dfc417
MD5 84ff94438bb558755b7a30940f204de7
BLAKE2b-256 f3bd435108876480136c2adfa8050f2675224c6f3ef9856955d7680f1202252e

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for blosc2-0.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 97b9df9b6c21d1fa1cadb78bd61b700ed6f47f99299a7844e68152b8ead4a33f
MD5 144fb33b1c7eff63865331fd72383b20
BLAKE2b-256 6bbd32aef1a17fdde94b477a82af7fc47e0e1068d2509eb75bf3200e26a8c400

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1cadd32f50238720d01141f993503764778a5246790bb09f433fabea0568d98e
MD5 f310982b3fc55f783839ded742aee6d9
BLAKE2b-256 0b3094bad0e03039c4fcd11c29f5246d16fb623c6a11f7487d5021d8bf5d008d

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 176895578d28da79892255282744049bc539523c7b94cf56938b8e719d6e3fd2
MD5 350bb5773400f155f0713814f40dcd33
BLAKE2b-256 282318b6f32903de696d236fda81c91af858c388b4b6c3128476ad8cee4dd895

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 256d2c15f59e21cbd76e2869bc77acde22e6f26cd5cf8e45f46c2fc840000202
MD5 ee309cfcb85e57dcd1ce80e7fd5e5bdf
BLAKE2b-256 4af4499abb83722fba49cf75eacc371f94781e7996f5db953a333766dae5892c

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a75e7989ac5d165f6797aaba0fd75bcaf5a1a736e86035b20cbe9764dac5e413
MD5 b54f81fdd3584f8730cba7bc2f569c98
BLAKE2b-256 300ca02cfe10c695247b2fc86632c9893c116770155f05b474c1d114ce3115a4

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 057bcda50520de0b26e8d399651c7f4ca1dfab40f06374ed8b464778a287fd83
MD5 d6710f67cdbf4e7098b27343c48e2217
BLAKE2b-256 4eb072fb6d213147bcd9f659d88ae0458ff9a01c9db46d8ed04fce0ddd7f4643

See more details on using hashes here.

File details

Details for the file blosc2-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 625bd9d91c5b172beee0c67886259a7801746d2dab420500c5bb08bde258e7b1
MD5 e717372badbb7b1d5e6f7060316e0820
BLAKE2b-256 78c2288a8cfd56cf119e2bb09b660acdf31d3b4316cd0f605fb34cd97528f938

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page