Skip to main content

Python wrapper for the C-Blosc2 library.

Project description

Author:

The Blosc development team

Contact:
blosc@blosc.org
Github:

https://github.com/Blosc/python-blosc2

PyPi:

version

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (http://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor. Currently python-blosc2 already reproduces the API of python-blosc, so the former can be used as a drop-in replacement for the later. However, there are a few exceptions for the complete compatibility that are listed here: https://github.com/Blosc/python-blosc2/blob/main/RELEASE_NOTES.md#changes-from-python-blosc-to-python-blosc2

In addition, python-blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, serialization and all the features introduced in C-Blosc2. This is work in process and will be done incrementally in future releases.

Note: python-blosc2 is meant to be backward compatible with python-blosc data. That means that it can read data generated with python-blosc, but the opposite is not true (i.e. there is no forward compatibility).

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://python-blosc2.readthedocs.io/en/latest/

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building

python-blosc2 comes with the Blosc sources with it and can be built with:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/compress_numpy.py

Just to whet your appetite, here are some speed figures for an Intel box (i9-10940X @ 3.30GHz) with 64 GB RAM running Clear Linux:

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc2 version: 0.1.7
Blosc version: 2.0.0.rc2 ($Date:: 2021-05-26 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'zlib', 'zstd']
Compressor library versions:
  blosclz: 2.4.0
  lz4: 1.9.3
  lz4hc: 1.9.3
  zlib: 1.2.11.zlib-ng
  zstd: 1.5.0
Python version: 3.7.9 (default, Aug 31 2020, 12:42:55)
[GCC 7.3.0]
Platform: Linux-5.12.6-1043.native-x86_64 (#1 SMP Sat May 22 04:04:10 PDT 2021)
Linux dist: Clear Linux OS
Processor: not recognized
Byte-ordering: little
Detected cores: 28
Number of threads to use by default: 8
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** np.copyto() *** Time for memcpy():    0.083 s (8.93 GB/s)

Times for compressing/decompressing:

*** the arange linear distribution ***
  *** blosclz, noshuffle  ***  0.219 s (3.41 GB/s) / 0.083 s (8.93 GB/s)    cr:   2.0x
  *** blosclz, shuffle    ***  0.027 s (27.26 GB/s) / 0.035 s (21.38 GB/s)  cr: 469.7x
  *** blosclz, bitshuffle ***  0.078 s (9.56 GB/s) / 0.135 s (5.53 GB/s)    cr: 488.2x
  *** lz4    , noshuffle  ***  0.223 s (3.33 GB/s) / 0.075 s (9.92 GB/s)    cr:   2.0x
  *** lz4    , shuffle    ***  0.025 s (29.69 GB/s) / 0.035 s (21.18 GB/s)  cr: 279.2x
  *** lz4    , bitshuffle ***  0.079 s (9.43 GB/s) / 0.138 s (5.40 GB/s)    cr:  87.7x
  *** lz4hc  , noshuffle  ***  1.273 s (0.59 GB/s) / 0.076 s (9.85 GB/s)    cr:   2.0x
  *** lz4hc  , shuffle    ***  0.108 s (6.87 GB/s) / 0.032 s (23.37 GB/s)   cr: 155.9x
  *** lz4hc  , bitshuffle ***  0.359 s (2.08 GB/s) / 0.037 s (19.88 GB/s)   cr: 239.5x
  *** zlib   , noshuffle  ***  2.732 s (0.27 GB/s) / 0.146 s (5.09 GB/s)    cr:   5.3x
  *** zlib   , shuffle    ***  0.129 s (5.78 GB/s) / 0.046 s (16.11 GB/s)   cr: 273.8x
  *** zlib   , bitshuffle ***  0.179 s (4.17 GB/s) / 0.058 s (12.78 GB/s)   cr: 457.9x
  *** zstd   , noshuffle  ***  1.912 s (0.39 GB/s) / 0.113 s (6.61 GB/s)    cr:   7.9x
  *** zstd   , shuffle    ***  0.223 s (3.34 GB/s) / 0.031 s (24.18 GB/s)   cr: 644.9x
  *** zstd   , bitshuffle ***  0.242 s (3.07 GB/s) / 0.038 s (19.61 GB/s)   cr: 985.6x

*** the linspace linear distribution ***
  *** blosclz, noshuffle  ***  0.099 s (7.55 GB/s) / 0.031 s (23.76 GB/s)   cr:   1.0x
  *** blosclz, shuffle    ***  0.050 s (15.02 GB/s) / 0.036 s (20.98 GB/s)  cr:  33.5x
  *** blosclz, bitshuffle ***  0.087 s (8.53 GB/s) / 0.147 s (5.08 GB/s)    cr:  55.4x
  *** lz4    , noshuffle  ***  0.085 s (8.77 GB/s) / 0.031 s (23.86 GB/s)   cr:   1.0x
  *** lz4    , shuffle    ***  0.038 s (19.53 GB/s) / 0.034 s (21.78 GB/s)  cr:  40.5x
  *** lz4    , bitshuffle ***  0.081 s (9.24 GB/s) / 0.146 s (5.09 GB/s)    cr:  59.5x
  *** lz4hc  , noshuffle  ***  1.902 s (0.39 GB/s) / 0.075 s (9.92 GB/s)    cr:   1.1x
  *** lz4hc  , shuffle    ***  0.237 s (3.14 GB/s) / 0.031 s (24.09 GB/s)   cr:  44.7x
  *** lz4hc  , bitshuffle ***  0.438 s (1.70 GB/s) / 0.035 s (21.03 GB/s)   cr:  58.0x
  *** zlib   , noshuffle  ***  2.078 s (0.36 GB/s) / 0.267 s (2.79 GB/s)    cr:   1.6x
  *** zlib   , shuffle    ***  0.239 s (3.11 GB/s) / 0.053 s (13.98 GB/s)   cr:  44.6x
  *** zlib   , bitshuffle ***  0.275 s (2.71 GB/s) / 0.065 s (11.45 GB/s)   cr:  66.9x
  *** zstd   , noshuffle  ***  2.792 s (0.27 GB/s) / 0.099 s (7.55 GB/s)    cr:   1.2x
  *** zstd   , shuffle    ***  0.374 s (1.99 GB/s) / 0.037 s (20.18 GB/s)   cr:  70.5x
  *** zstd   , bitshuffle ***  0.367 s (2.03 GB/s) / 0.053 s (14.10 GB/s)   cr:  51.2x

*** the random distribution ***
  *** blosclz, noshuffle  ***  0.245 s (3.04 GB/s) / 0.105 s (7.12 GB/s)    cr:   2.1x
  *** blosclz, shuffle    ***  0.098 s (7.59 GB/s) / 0.038 s (19.56 GB/s)   cr:   4.0x
  *** blosclz, bitshuffle ***  0.163 s (4.57 GB/s) / 0.139 s (5.35 GB/s)    cr:   4.0x
  *** lz4    , noshuffle  ***  0.240 s (3.10 GB/s) / 0.040 s (18.65 GB/s)   cr:   2.1x
  *** lz4    , shuffle    ***  0.109 s (6.83 GB/s) / 0.039 s (19.28 GB/s)   cr:   4.0x
  *** lz4    , bitshuffle ***  0.144 s (5.18 GB/s) / 0.139 s (5.35 GB/s)    cr:   4.6x
  *** lz4hc  , noshuffle  ***  1.222 s (0.61 GB/s) / 0.035 s (21.25 GB/s)   cr:   2.8x
  *** lz4hc  , shuffle    ***  0.453 s (1.65 GB/s) / 0.038 s (19.66 GB/s)   cr:   4.0x
  *** lz4hc  , bitshuffle ***  0.419 s (1.78 GB/s) / 0.041 s (17.97 GB/s)   cr:   4.5x
  *** zlib   , noshuffle  ***  4.050 s (0.18 GB/s) / 0.208 s (3.58 GB/s)    cr:   3.2x
  *** zlib   , shuffle    ***  0.654 s (1.14 GB/s) / 0.074 s (10.06 GB/s)   cr:   4.7x
  *** zlib   , bitshuffle ***  0.610 s (1.22 GB/s) / 0.078 s (9.51 GB/s)    cr:   4.6x
  *** zstd   , noshuffle  ***  2.214 s (0.34 GB/s) / 0.125 s (5.95 GB/s)    cr:   4.0x
  *** zstd   , shuffle    ***  0.874 s (0.85 GB/s) / 0.039 s (19.01 GB/s)   cr:   4.4x
  *** zstd   , bitshuffle ***  0.858 s (0.87 GB/s) / 0.054 s (13.71 GB/s)   cr:   4.6x

For the matter of comparison, here are the results for an ARM box; an Apple MacBook Air M1 (2021) with 8 GB of RAM:

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc2 version: 0.1.6.dev0
Blosc version: 2.0.0.rc2 ($Date:: 2021-05-26 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'zlib', 'zstd']
Compressor library versions:
  blosclz: 2.4.0
  lz4: 1.9.3
  lz4hc: 1.9.3
  zlib: 1.2.11.zlib-ng
  zstd: 1.5.0
Python version: 3.9.5 (default, May  3 2021, 19:12:05)
[Clang 12.0.5 (clang-1205.0.22.9)]
Platform: Darwin-20.4.0-arm64 (Darwin Kernel Version 20.4.0: Fri Mar  5 01:14:02 PST 2021; root:xnu-7195.101.1~3/RELEASE_ARM64_T8101)
Processor: arm
Byte-ordering: little
Detected cores: 8
Number of threads to use by default: 8
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** np.copyto() *** Time for memcpy():    0.030 s (25.04 GB/s)

Times for compressing/decompressing:

*** the arange linear distribution ***
  *** blosclz, noshuffle  ***  0.253 s (2.95 GB/s) / 0.109 s (6.83 GB/s)    cr:   2.0x
  *** blosclz, shuffle    ***  0.036 s (20.44 GB/s) / 0.024 s (31.08 GB/s)  cr: 469.7x
  *** blosclz, bitshuffle ***  0.123 s (6.04 GB/s) / 0.238 s (3.13 GB/s)    cr: 488.2x
  *** lz4    , noshuffle  ***  0.332 s (2.24 GB/s) / 0.072 s (10.39 GB/s)   cr:   2.0x
  *** lz4    , shuffle    ***  0.035 s (21.18 GB/s) / 0.030 s (24.93 GB/s)  cr: 279.2x
  *** lz4    , bitshuffle ***  0.126 s (5.91 GB/s) / 0.239 s (3.12 GB/s)    cr:  87.7x
  *** lz4hc  , noshuffle  ***  2.365 s (0.32 GB/s) / 0.080 s (9.35 GB/s)    cr:   2.0x
  *** lz4hc  , shuffle    ***  0.136 s (5.48 GB/s) / 0.047 s (15.89 GB/s)   cr: 155.9x
  *** lz4hc  , bitshuffle ***  0.545 s (1.37 GB/s) / 0.168 s (4.42 GB/s)    cr: 239.5x
  *** zlib   , noshuffle  ***  4.875 s (0.15 GB/s) / 0.279 s (2.67 GB/s)    cr:   5.3x
  *** zlib   , shuffle    ***  0.213 s (3.50 GB/s) / 0.091 s (8.20 GB/s)    cr: 273.8x
  *** zlib   , bitshuffle ***  0.344 s (2.16 GB/s) / 0.213 s (3.50 GB/s)    cr: 457.9x
  *** zstd   , noshuffle  ***  2.961 s (0.25 GB/s) / 0.168 s (4.44 GB/s)    cr:   7.9x
  *** zstd   , shuffle    ***  0.265 s (2.82 GB/s) / 0.035 s (21.46 GB/s)   cr: 644.9x
  *** zstd   , bitshuffle ***  0.392 s (1.90 GB/s) / 0.158 s (4.73 GB/s)    cr: 985.6x

*** the linspace linear distribution ***
  *** blosclz, noshuffle  ***  0.372 s (2.00 GB/s) / 0.029 s (25.42 GB/s)   cr:   1.0x
  *** blosclz, shuffle    ***  0.065 s (11.46 GB/s) / 0.035 s (21.13 GB/s)  cr:  33.5x
  *** blosclz, bitshuffle ***  0.148 s (5.03 GB/s) / 0.250 s (2.98 GB/s)    cr:  55.4x
  *** lz4    , noshuffle  ***  0.109 s (6.84 GB/s) / 0.037 s (19.89 GB/s)   cr:   1.0x
  *** lz4    , shuffle    ***  0.052 s (14.27 GB/s) / 0.038 s (19.65 GB/s)  cr:  40.5x
  *** lz4    , bitshuffle ***  0.138 s (5.42 GB/s) / 0.250 s (2.99 GB/s)    cr:  59.5x
  *** lz4hc  , noshuffle  ***  3.962 s (0.19 GB/s) / 0.070 s (10.61 GB/s)   cr:   1.1x
  *** lz4hc  , shuffle    ***  0.366 s (2.04 GB/s) / 0.037 s (19.99 GB/s)   cr:  44.7x
  *** lz4hc  , bitshuffle ***  0.764 s (0.97 GB/s) / 0.159 s (4.69 GB/s)    cr:  58.0x
  *** zlib   , noshuffle  ***  3.290 s (0.23 GB/s) / 0.502 s (1.49 GB/s)    cr:   1.6x
  *** zlib   , shuffle    ***  0.403 s (1.85 GB/s) / 0.103 s (7.23 GB/s)    cr:  44.6x
  *** zlib   , bitshuffle ***  0.533 s (1.40 GB/s) / 0.228 s (3.27 GB/s)    cr:  66.9x
  *** zstd   , noshuffle  ***  3.747 s (0.20 GB/s) / 0.192 s (3.89 GB/s)    cr:   1.2x
  *** zstd   , shuffle    ***  0.483 s (1.54 GB/s) / 0.057 s (13.17 GB/s)   cr:  70.5x
  *** zstd   , bitshuffle ***  0.634 s (1.17 GB/s) / 0.204 s (3.65 GB/s)    cr:  51.2x

*** the random distribution ***
  *** blosclz, noshuffle  ***  0.410 s (1.82 GB/s) / 0.135 s (5.50 GB/s)    cr:   2.1x
  *** blosclz, shuffle    ***  0.087 s (8.53 GB/s) / 0.029 s (25.29 GB/s)   cr:   4.0x
  *** blosclz, bitshuffle ***  0.169 s (4.40 GB/s) / 0.236 s (3.15 GB/s)    cr:   4.0x
  *** lz4    , noshuffle  ***  0.359 s (2.08 GB/s) / 0.060 s (12.50 GB/s)   cr:   2.1x
  *** lz4    , shuffle    ***  0.075 s (9.88 GB/s) / 0.029 s (25.40 GB/s)   cr:   4.0x
  *** lz4    , bitshuffle ***  0.155 s (4.81 GB/s) / 0.239 s (3.12 GB/s)    cr:   4.6x
  *** lz4hc  , noshuffle  ***  2.053 s (0.36 GB/s) / 0.045 s (16.71 GB/s)   cr:   2.8x
  *** lz4hc  , shuffle    ***  0.797 s (0.93 GB/s) / 0.051 s (14.63 GB/s)   cr:   4.0x
  *** lz4hc  , bitshuffle ***  0.795 s (0.94 GB/s) / 0.177 s (4.21 GB/s)    cr:   4.5x
  *** zlib   , noshuffle  ***  5.562 s (0.13 GB/s) / 0.367 s (2.03 GB/s)    cr:   3.2x
  *** zlib   , shuffle    ***  0.934 s (0.80 GB/s) / 0.148 s (5.03 GB/s)    cr:   4.7x
  *** zlib   , bitshuffle ***  0.959 s (0.78 GB/s) / 0.262 s (2.85 GB/s)    cr:   4.6x
  *** zstd   , noshuffle  ***  3.841 s (0.19 GB/s) / 0.228 s (3.27 GB/s)    cr:   4.0x
  *** zstd   , shuffle    ***  1.078 s (0.69 GB/s) / 0.069 s (10.76 GB/s)   cr:   4.4x
  *** zstd   , bitshuffle ***  1.044 s (0.71 GB/s) / 0.201 s (3.71 GB/s)    cr:   4.6x

As can be seen, is perfectly possible for python-blosc2 to go faster than a plain memcpy().

Start using compression in your data workflows and feel the experience of doing more with less!

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE. A copy of all licenses can be found in LICENSES/.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

http://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-0.3.1.tar.gz (2.4 MB view details)

Uploaded Source

Built Distributions

blosc2-0.3.1-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-0.3.1-cp310-cp310-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc2-0.3.1-cp310-cp310-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

blosc2-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-0.3.1-cp310-cp310-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-0.3.1-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-0.3.1-cp39-cp39-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc2-0.3.1-cp39-cp39-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

blosc2-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-0.3.1-cp39-cp39-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc2-0.3.1-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc2-0.3.1-cp38-cp38-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

blosc2-0.3.1-cp38-cp38-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

blosc2-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

blosc2-0.3.1-cp38-cp38-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file blosc2-0.3.1.tar.gz.

File metadata

  • Download URL: blosc2-0.3.1.tar.gz
  • Upload date:
  • Size: 2.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for blosc2-0.3.1.tar.gz
Algorithm Hash digest
SHA256 2771e1920aa8917eb62cf620e2120ff486c6911afd0960a561e79ceeb2ececfb
MD5 d0b9310515aab918e1f1bc28b31749a9
BLAKE2b-256 f9359a822d190996f132e22adebcc3696e21d364f105151de05f9d67acccc071

See more details on using hashes here.

File details

Details for the file blosc2-0.3.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.3.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for blosc2-0.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3d53c122379282e88e79a82ded6e770eb020e286aa3d5715638ab595d730a989
MD5 85a3ad1851f76c99cf9e26480648a94f
BLAKE2b-256 e296d459a7bca4dd65d974a342e496dec736061b90521ba508043a48aa8baea9

See more details on using hashes here.

File details

Details for the file blosc2-0.3.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e87f80545046ef7c546946a219e261728407c76754c04fea49b117371a6e6050
MD5 f7223e605eb7e88a3b060128aa62986c
BLAKE2b-256 d449c7c550b30a815ad5b2f3814b53d213f099031da7c0685eea8e63af55726e

See more details on using hashes here.

File details

Details for the file blosc2-0.3.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.3.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9d99b1c4bb5e100da830b1f22ee33045a0ce7bb0d6238e4e57380ef534bc654e
MD5 b0442b8c9a327eb3e6a4e061cc010410
BLAKE2b-256 b4adee1b0051f3b5e7980be536aa33ce0452af2170e0614168e49a2a0bb62092

See more details on using hashes here.

File details

Details for the file blosc2-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b78ab7dd5fb0ca45da898f2fc07f546d6d9332a2dfbd87d99b40684206b1eca
MD5 dff1d195db6bd38314c8e6db2830bd5d
BLAKE2b-256 3c58a51e8fecdb849176f900ff3c4d375ad73df832a746b7b1d493cb0b0b0262

See more details on using hashes here.

File details

Details for the file blosc2-0.3.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fe8bdcb7bc99e6326bcf83fad19dad34c69a96012677d2d41f5b9ff59cb4d0b2
MD5 a108fe2acabfd409312d83c9e2fafea8
BLAKE2b-256 187c23a50e9e9930c2bd7925cf94abaa238b9d46241a9b821884dd8af7366d7a

See more details on using hashes here.

File details

Details for the file blosc2-0.3.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.3.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for blosc2-0.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e92106e34c18616e35f23225142909530ae7e5b87c28034f1a002d4d5a04d562
MD5 66febd99a3ba10f4b0b69966945deef1
BLAKE2b-256 af9c848278660178fa276ffc5371bec1aebab851f7c3d54532a8ca4d725667e3

See more details on using hashes here.

File details

Details for the file blosc2-0.3.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7f48502f63ba27bfa3d5f33b478b10b131dd20bf0a8a4e43b3612ba4973d317e
MD5 193934d9dfb88a105453bf8808fa2102
BLAKE2b-256 008c79504f16022aba784af9b9183339cbd711de07450bee05a002ada7931d56

See more details on using hashes here.

File details

Details for the file blosc2-0.3.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.3.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 48bb20bce2ddb6bf5738ab10d68f4a5c79c9f0b19ee803205ffd9f5b47a8736d
MD5 76b5035d9c3500c9bd85af19d632c027
BLAKE2b-256 0dc9c7ef15f4083a29d9411462d89e9562654c806888ff1595321e595ad19325

See more details on using hashes here.

File details

Details for the file blosc2-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d5fbfb1f9823373454993e715dcc8ad567314cb2d104fc55bc923e0db30a9b7
MD5 f1c3c3f66fae82a860488e539bf6277d
BLAKE2b-256 4de64111cd21500ef319ce908fd409b07b4d468a571e4d240c595f6b4c2432bf

See more details on using hashes here.

File details

Details for the file blosc2-0.3.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7a4ba47e07a7af49a7a0a972a87e5257dd38eb4124174003c6e9b751c25c52f8
MD5 143921da872ab50ac69e2318d16c7d59
BLAKE2b-256 074008faf71b38b08a5ac692398fd84864fc0451c09756bf2ef694b350647d97

See more details on using hashes here.

File details

Details for the file blosc2-0.3.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.3.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for blosc2-0.3.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d5c06bbe7a03532eccd80b72659952f8619ecf99cded8782c44c6bc856d1faef
MD5 986f799833df488052a4dac3bbb81954
BLAKE2b-256 d61b76f7e2516b34f9c61e55fb9aeebd1eabd39636b84d9dbb3a18e0b64c14c7

See more details on using hashes here.

File details

Details for the file blosc2-0.3.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 22fa57a1c2e8110b67d32ccaf1e1112f1e7117f24e0956e1df4590a43e667282
MD5 710b816c1ff6fbda13e407820cfc392f
BLAKE2b-256 9e681e9b4d239fe277f3bcf021a827fb62b18fedd89ffe12ff36a1aad45b2cff

See more details on using hashes here.

File details

Details for the file blosc2-0.3.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.3.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5ac0fa42203e18cc76d5f34456a223722f29a5a6076b6e9e2a68bd79e16fb487
MD5 a91aa89fb3de663e01062fcd0975203f
BLAKE2b-256 5709d1bf27d416dde76fef84fab63516ec0d3f1292b839c3da76aa81a60a7adb

See more details on using hashes here.

File details

Details for the file blosc2-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8a69bb9b0c73c0e6cf3a053eb301e662ef6c8f7cd58b8bd16945cd8472a2811
MD5 3d27910fcfdf1887ec2e5431a0f6855e
BLAKE2b-256 f929ce670e03663139fca4e026b816a202367e25d4a2b25890710b9fc218e036

See more details on using hashes here.

File details

Details for the file blosc2-0.3.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7ffbf1600d106d9c391eb4e3f95760b38dbf7ed7f7e5036ebe108aca1290c7e0
MD5 6f716a64cf917572e6e51e129f98698e
BLAKE2b-256 649d19d2b8b1f17e127dc379a3460d72c9d1e90c97c99f3aa182189a87e92deb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page