Skip to main content

Python wrapper for the C-Blosc2 library.

Project description

Author:

The Blosc development team

Contact:
blosc@blosc.org
Github:

https://github.com/Blosc/python-blosc2

PyPi:

version

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (http://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor. Currently python-blosc2 already reproduces the API of python-blosc, so the former can be used as a drop-in replacement for the later. However, there are a few exceptions for the complete compatibility that are listed here: https://github.com/Blosc/python-blosc2/blob/main/RELEASE_NOTES.md#changes-from-python-blosc-to-python-blosc2

In addition, python-blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, serialization and all the features introduced in C-Blosc2. This is work in process and will be done incrementally in future releases.

Note: python-blosc2 is meant to be backward compatible with python-blosc data. That means that it can read data generated with python-blosc, but the opposite is not true (i.e. there is no forward compatibility).

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://python-blosc2.readthedocs.io/en/latest/

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building

python-blosc2 comes with the Blosc sources with it and can be built with:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/compress_numpy.py

Just to whet your appetite, here are some speed figures for an Intel box (i9-10940X @ 3.30GHz) with 64 GB RAM running Clear Linux:

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc2 version: 0.1.7
Blosc version: 2.0.0.rc2 ($Date:: 2021-05-26 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'zlib', 'zstd']
Compressor library versions:
  blosclz: 2.4.0
  lz4: 1.9.3
  lz4hc: 1.9.3
  zlib: 1.2.11.zlib-ng
  zstd: 1.5.0
Python version: 3.7.9 (default, Aug 31 2020, 12:42:55)
[GCC 7.3.0]
Platform: Linux-5.12.6-1043.native-x86_64 (#1 SMP Sat May 22 04:04:10 PDT 2021)
Linux dist: Clear Linux OS
Processor: not recognized
Byte-ordering: little
Detected cores: 28
Number of threads to use by default: 8
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** np.copyto() *** Time for memcpy():    0.083 s (8.93 GB/s)

Times for compressing/decompressing:

*** the arange linear distribution ***
  *** blosclz, noshuffle  ***  0.219 s (3.41 GB/s) / 0.083 s (8.93 GB/s)    cr:   2.0x
  *** blosclz, shuffle    ***  0.027 s (27.26 GB/s) / 0.035 s (21.38 GB/s)  cr: 469.7x
  *** blosclz, bitshuffle ***  0.078 s (9.56 GB/s) / 0.135 s (5.53 GB/s)    cr: 488.2x
  *** lz4    , noshuffle  ***  0.223 s (3.33 GB/s) / 0.075 s (9.92 GB/s)    cr:   2.0x
  *** lz4    , shuffle    ***  0.025 s (29.69 GB/s) / 0.035 s (21.18 GB/s)  cr: 279.2x
  *** lz4    , bitshuffle ***  0.079 s (9.43 GB/s) / 0.138 s (5.40 GB/s)    cr:  87.7x
  *** lz4hc  , noshuffle  ***  1.273 s (0.59 GB/s) / 0.076 s (9.85 GB/s)    cr:   2.0x
  *** lz4hc  , shuffle    ***  0.108 s (6.87 GB/s) / 0.032 s (23.37 GB/s)   cr: 155.9x
  *** lz4hc  , bitshuffle ***  0.359 s (2.08 GB/s) / 0.037 s (19.88 GB/s)   cr: 239.5x
  *** zlib   , noshuffle  ***  2.732 s (0.27 GB/s) / 0.146 s (5.09 GB/s)    cr:   5.3x
  *** zlib   , shuffle    ***  0.129 s (5.78 GB/s) / 0.046 s (16.11 GB/s)   cr: 273.8x
  *** zlib   , bitshuffle ***  0.179 s (4.17 GB/s) / 0.058 s (12.78 GB/s)   cr: 457.9x
  *** zstd   , noshuffle  ***  1.912 s (0.39 GB/s) / 0.113 s (6.61 GB/s)    cr:   7.9x
  *** zstd   , shuffle    ***  0.223 s (3.34 GB/s) / 0.031 s (24.18 GB/s)   cr: 644.9x
  *** zstd   , bitshuffle ***  0.242 s (3.07 GB/s) / 0.038 s (19.61 GB/s)   cr: 985.6x

*** the linspace linear distribution ***
  *** blosclz, noshuffle  ***  0.099 s (7.55 GB/s) / 0.031 s (23.76 GB/s)   cr:   1.0x
  *** blosclz, shuffle    ***  0.050 s (15.02 GB/s) / 0.036 s (20.98 GB/s)  cr:  33.5x
  *** blosclz, bitshuffle ***  0.087 s (8.53 GB/s) / 0.147 s (5.08 GB/s)    cr:  55.4x
  *** lz4    , noshuffle  ***  0.085 s (8.77 GB/s) / 0.031 s (23.86 GB/s)   cr:   1.0x
  *** lz4    , shuffle    ***  0.038 s (19.53 GB/s) / 0.034 s (21.78 GB/s)  cr:  40.5x
  *** lz4    , bitshuffle ***  0.081 s (9.24 GB/s) / 0.146 s (5.09 GB/s)    cr:  59.5x
  *** lz4hc  , noshuffle  ***  1.902 s (0.39 GB/s) / 0.075 s (9.92 GB/s)    cr:   1.1x
  *** lz4hc  , shuffle    ***  0.237 s (3.14 GB/s) / 0.031 s (24.09 GB/s)   cr:  44.7x
  *** lz4hc  , bitshuffle ***  0.438 s (1.70 GB/s) / 0.035 s (21.03 GB/s)   cr:  58.0x
  *** zlib   , noshuffle  ***  2.078 s (0.36 GB/s) / 0.267 s (2.79 GB/s)    cr:   1.6x
  *** zlib   , shuffle    ***  0.239 s (3.11 GB/s) / 0.053 s (13.98 GB/s)   cr:  44.6x
  *** zlib   , bitshuffle ***  0.275 s (2.71 GB/s) / 0.065 s (11.45 GB/s)   cr:  66.9x
  *** zstd   , noshuffle  ***  2.792 s (0.27 GB/s) / 0.099 s (7.55 GB/s)    cr:   1.2x
  *** zstd   , shuffle    ***  0.374 s (1.99 GB/s) / 0.037 s (20.18 GB/s)   cr:  70.5x
  *** zstd   , bitshuffle ***  0.367 s (2.03 GB/s) / 0.053 s (14.10 GB/s)   cr:  51.2x

*** the random distribution ***
  *** blosclz, noshuffle  ***  0.245 s (3.04 GB/s) / 0.105 s (7.12 GB/s)    cr:   2.1x
  *** blosclz, shuffle    ***  0.098 s (7.59 GB/s) / 0.038 s (19.56 GB/s)   cr:   4.0x
  *** blosclz, bitshuffle ***  0.163 s (4.57 GB/s) / 0.139 s (5.35 GB/s)    cr:   4.0x
  *** lz4    , noshuffle  ***  0.240 s (3.10 GB/s) / 0.040 s (18.65 GB/s)   cr:   2.1x
  *** lz4    , shuffle    ***  0.109 s (6.83 GB/s) / 0.039 s (19.28 GB/s)   cr:   4.0x
  *** lz4    , bitshuffle ***  0.144 s (5.18 GB/s) / 0.139 s (5.35 GB/s)    cr:   4.6x
  *** lz4hc  , noshuffle  ***  1.222 s (0.61 GB/s) / 0.035 s (21.25 GB/s)   cr:   2.8x
  *** lz4hc  , shuffle    ***  0.453 s (1.65 GB/s) / 0.038 s (19.66 GB/s)   cr:   4.0x
  *** lz4hc  , bitshuffle ***  0.419 s (1.78 GB/s) / 0.041 s (17.97 GB/s)   cr:   4.5x
  *** zlib   , noshuffle  ***  4.050 s (0.18 GB/s) / 0.208 s (3.58 GB/s)    cr:   3.2x
  *** zlib   , shuffle    ***  0.654 s (1.14 GB/s) / 0.074 s (10.06 GB/s)   cr:   4.7x
  *** zlib   , bitshuffle ***  0.610 s (1.22 GB/s) / 0.078 s (9.51 GB/s)    cr:   4.6x
  *** zstd   , noshuffle  ***  2.214 s (0.34 GB/s) / 0.125 s (5.95 GB/s)    cr:   4.0x
  *** zstd   , shuffle    ***  0.874 s (0.85 GB/s) / 0.039 s (19.01 GB/s)   cr:   4.4x
  *** zstd   , bitshuffle ***  0.858 s (0.87 GB/s) / 0.054 s (13.71 GB/s)   cr:   4.6x

For the matter of comparison, here are the results for an ARM box; an Apple MacBook Air M1 (2021) with 8 GB of RAM:

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc2 version: 0.1.6.dev0
Blosc version: 2.0.0.rc2 ($Date:: 2021-05-26 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'zlib', 'zstd']
Compressor library versions:
  blosclz: 2.4.0
  lz4: 1.9.3
  lz4hc: 1.9.3
  zlib: 1.2.11.zlib-ng
  zstd: 1.5.0
Python version: 3.9.5 (default, May  3 2021, 19:12:05)
[Clang 12.0.5 (clang-1205.0.22.9)]
Platform: Darwin-20.4.0-arm64 (Darwin Kernel Version 20.4.0: Fri Mar  5 01:14:02 PST 2021; root:xnu-7195.101.1~3/RELEASE_ARM64_T8101)
Processor: arm
Byte-ordering: little
Detected cores: 8
Number of threads to use by default: 8
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  *** np.copyto() *** Time for memcpy():    0.030 s (25.04 GB/s)

Times for compressing/decompressing:

*** the arange linear distribution ***
  *** blosclz, noshuffle  ***  0.253 s (2.95 GB/s) / 0.109 s (6.83 GB/s)    cr:   2.0x
  *** blosclz, shuffle    ***  0.036 s (20.44 GB/s) / 0.024 s (31.08 GB/s)  cr: 469.7x
  *** blosclz, bitshuffle ***  0.123 s (6.04 GB/s) / 0.238 s (3.13 GB/s)    cr: 488.2x
  *** lz4    , noshuffle  ***  0.332 s (2.24 GB/s) / 0.072 s (10.39 GB/s)   cr:   2.0x
  *** lz4    , shuffle    ***  0.035 s (21.18 GB/s) / 0.030 s (24.93 GB/s)  cr: 279.2x
  *** lz4    , bitshuffle ***  0.126 s (5.91 GB/s) / 0.239 s (3.12 GB/s)    cr:  87.7x
  *** lz4hc  , noshuffle  ***  2.365 s (0.32 GB/s) / 0.080 s (9.35 GB/s)    cr:   2.0x
  *** lz4hc  , shuffle    ***  0.136 s (5.48 GB/s) / 0.047 s (15.89 GB/s)   cr: 155.9x
  *** lz4hc  , bitshuffle ***  0.545 s (1.37 GB/s) / 0.168 s (4.42 GB/s)    cr: 239.5x
  *** zlib   , noshuffle  ***  4.875 s (0.15 GB/s) / 0.279 s (2.67 GB/s)    cr:   5.3x
  *** zlib   , shuffle    ***  0.213 s (3.50 GB/s) / 0.091 s (8.20 GB/s)    cr: 273.8x
  *** zlib   , bitshuffle ***  0.344 s (2.16 GB/s) / 0.213 s (3.50 GB/s)    cr: 457.9x
  *** zstd   , noshuffle  ***  2.961 s (0.25 GB/s) / 0.168 s (4.44 GB/s)    cr:   7.9x
  *** zstd   , shuffle    ***  0.265 s (2.82 GB/s) / 0.035 s (21.46 GB/s)   cr: 644.9x
  *** zstd   , bitshuffle ***  0.392 s (1.90 GB/s) / 0.158 s (4.73 GB/s)    cr: 985.6x

*** the linspace linear distribution ***
  *** blosclz, noshuffle  ***  0.372 s (2.00 GB/s) / 0.029 s (25.42 GB/s)   cr:   1.0x
  *** blosclz, shuffle    ***  0.065 s (11.46 GB/s) / 0.035 s (21.13 GB/s)  cr:  33.5x
  *** blosclz, bitshuffle ***  0.148 s (5.03 GB/s) / 0.250 s (2.98 GB/s)    cr:  55.4x
  *** lz4    , noshuffle  ***  0.109 s (6.84 GB/s) / 0.037 s (19.89 GB/s)   cr:   1.0x
  *** lz4    , shuffle    ***  0.052 s (14.27 GB/s) / 0.038 s (19.65 GB/s)  cr:  40.5x
  *** lz4    , bitshuffle ***  0.138 s (5.42 GB/s) / 0.250 s (2.99 GB/s)    cr:  59.5x
  *** lz4hc  , noshuffle  ***  3.962 s (0.19 GB/s) / 0.070 s (10.61 GB/s)   cr:   1.1x
  *** lz4hc  , shuffle    ***  0.366 s (2.04 GB/s) / 0.037 s (19.99 GB/s)   cr:  44.7x
  *** lz4hc  , bitshuffle ***  0.764 s (0.97 GB/s) / 0.159 s (4.69 GB/s)    cr:  58.0x
  *** zlib   , noshuffle  ***  3.290 s (0.23 GB/s) / 0.502 s (1.49 GB/s)    cr:   1.6x
  *** zlib   , shuffle    ***  0.403 s (1.85 GB/s) / 0.103 s (7.23 GB/s)    cr:  44.6x
  *** zlib   , bitshuffle ***  0.533 s (1.40 GB/s) / 0.228 s (3.27 GB/s)    cr:  66.9x
  *** zstd   , noshuffle  ***  3.747 s (0.20 GB/s) / 0.192 s (3.89 GB/s)    cr:   1.2x
  *** zstd   , shuffle    ***  0.483 s (1.54 GB/s) / 0.057 s (13.17 GB/s)   cr:  70.5x
  *** zstd   , bitshuffle ***  0.634 s (1.17 GB/s) / 0.204 s (3.65 GB/s)    cr:  51.2x

*** the random distribution ***
  *** blosclz, noshuffle  ***  0.410 s (1.82 GB/s) / 0.135 s (5.50 GB/s)    cr:   2.1x
  *** blosclz, shuffle    ***  0.087 s (8.53 GB/s) / 0.029 s (25.29 GB/s)   cr:   4.0x
  *** blosclz, bitshuffle ***  0.169 s (4.40 GB/s) / 0.236 s (3.15 GB/s)    cr:   4.0x
  *** lz4    , noshuffle  ***  0.359 s (2.08 GB/s) / 0.060 s (12.50 GB/s)   cr:   2.1x
  *** lz4    , shuffle    ***  0.075 s (9.88 GB/s) / 0.029 s (25.40 GB/s)   cr:   4.0x
  *** lz4    , bitshuffle ***  0.155 s (4.81 GB/s) / 0.239 s (3.12 GB/s)    cr:   4.6x
  *** lz4hc  , noshuffle  ***  2.053 s (0.36 GB/s) / 0.045 s (16.71 GB/s)   cr:   2.8x
  *** lz4hc  , shuffle    ***  0.797 s (0.93 GB/s) / 0.051 s (14.63 GB/s)   cr:   4.0x
  *** lz4hc  , bitshuffle ***  0.795 s (0.94 GB/s) / 0.177 s (4.21 GB/s)    cr:   4.5x
  *** zlib   , noshuffle  ***  5.562 s (0.13 GB/s) / 0.367 s (2.03 GB/s)    cr:   3.2x
  *** zlib   , shuffle    ***  0.934 s (0.80 GB/s) / 0.148 s (5.03 GB/s)    cr:   4.7x
  *** zlib   , bitshuffle ***  0.959 s (0.78 GB/s) / 0.262 s (2.85 GB/s)    cr:   4.6x
  *** zstd   , noshuffle  ***  3.841 s (0.19 GB/s) / 0.228 s (3.27 GB/s)    cr:   4.0x
  *** zstd   , shuffle    ***  1.078 s (0.69 GB/s) / 0.069 s (10.76 GB/s)   cr:   4.4x
  *** zstd   , bitshuffle ***  1.044 s (0.71 GB/s) / 0.201 s (3.71 GB/s)    cr:   4.6x

As can be seen, is perfectly possible for python-blosc2 to go faster than a plain memcpy().

Start using compression in your data workflows and feel the experience of doing more with less!

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE. A copy of all licenses can be found in LICENSES/.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

http://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-0.3.2.tar.gz (2.4 MB view details)

Uploaded Source

Built Distributions

blosc2-0.3.2-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-0.3.2-cp310-cp310-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc2-0.3.2-cp310-cp310-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

blosc2-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-0.3.2-cp310-cp310-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-0.3.2-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-0.3.2-cp39-cp39-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc2-0.3.2-cp39-cp39-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

blosc2-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-0.3.2-cp39-cp39-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc2-0.3.2-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc2-0.3.2-cp38-cp38-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

blosc2-0.3.2-cp38-cp38-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

blosc2-0.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

blosc2-0.3.2-cp38-cp38-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file blosc2-0.3.2.tar.gz.

File metadata

  • Download URL: blosc2-0.3.2.tar.gz
  • Upload date:
  • Size: 2.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for blosc2-0.3.2.tar.gz
Algorithm Hash digest
SHA256 99679a330506f85dafe71080a96483ddaf091fabb84f51ed673b8fd860aa34bd
MD5 0995e4eab183f50a79267832e7b40f00
BLAKE2b-256 9c5f9818801c79c08c163815c244409543037b6694f2930795fcdca6a108384d

See more details on using hashes here.

File details

Details for the file blosc2-0.3.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.3.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for blosc2-0.3.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e97d67b905abe6b2b5e6f6091d05c00016d5fe89b608efca21f2fb997700e432
MD5 8309c843f3cd85cd810aa49e9c72e964
BLAKE2b-256 a7337ce14e283eeb7afae213dfb8f22bdea97b9c0bc0141ba11d84c9640813c3

See more details on using hashes here.

File details

Details for the file blosc2-0.3.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a1337f87fadce2810f3ca6a74d705429077406c3f40e7dcb1bcac78f9a748efe
MD5 19ee1f7319ad6dad886495e23410f30b
BLAKE2b-256 6d2c181e910cd4cfa6d0c3facb1cf1cd39c91ac85ad5b6ac53dee1c19fbe18d1

See more details on using hashes here.

File details

Details for the file blosc2-0.3.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.3.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c6b6e4c3dac7907150f5208f762ac36ba161c1705361b7172ee25897899f84f9
MD5 1143493633c450d5da7148cd662b6e3b
BLAKE2b-256 732fa1a65120aeda3bf961504bcef4db4a4b216cf11807dc67ffbe4c78b57bef

See more details on using hashes here.

File details

Details for the file blosc2-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33423af150a529f936b0c48781b6787f118db5ec788e4c3b6b2b7b26ea1a0305
MD5 27c7b8b73572d537554be5b86b0ef5b2
BLAKE2b-256 ea667ad6d47f463037b4dd7ba56d1056872770fb0ec37c18c10fcebc4c478365

See more details on using hashes here.

File details

Details for the file blosc2-0.3.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b5b892642dc2d1a31e02b2bd5334835b9ddab24d8b310dc7c84b4676489c2bb5
MD5 dba8f204b20ab35209b7f9175a7d7ea6
BLAKE2b-256 8b874430859e3be30ba18568061f820f89b77a0cf7dd0096d443287c89f91f98

See more details on using hashes here.

File details

Details for the file blosc2-0.3.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.3.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for blosc2-0.3.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3e66b932028d89ddd43bd6f2815cd81e6c4702a5b601b70beea6ad9c80b70661
MD5 fa65f221db094520d6f2c94883900fd8
BLAKE2b-256 0eabe1193fc36f249db1d4a6d43466af0f74cc103f5c85a4f345e4c80c16727c

See more details on using hashes here.

File details

Details for the file blosc2-0.3.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2e9d5ec16f828d4bd0887b3058027b70c0d0490109d78d4b829f8c7ed24248ad
MD5 9dd96ba458c6bd88a32e866453926ba0
BLAKE2b-256 e9a918ac48be9f2b63732cff74d8fbb08318889648bb99e00044ee2a8379a713

See more details on using hashes here.

File details

Details for the file blosc2-0.3.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.3.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 894f230eee8ab6323a8227885d934d865890ac6470a6846d8c934323e695bd00
MD5 79200f2bf278901c99b3a0574cafd322
BLAKE2b-256 5004f5d77e1bf9098836af798cf87b81c99a503ced709b8c990f8caf9de6af13

See more details on using hashes here.

File details

Details for the file blosc2-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 27c2a3f735bc5546ffb06f781060122e8eda227e30dff13536b00bbab9d0030f
MD5 4e84b23b92945f53f9def6cf643dbf0e
BLAKE2b-256 544eefe37bf06a3a699d6a1dcb214097f88cc04db3ab1d9d2f11f5c4afa66d5f

See more details on using hashes here.

File details

Details for the file blosc2-0.3.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5953614cf2acdee5e44195c51396a874b7e564f5960a3b4f71dc010beabd05c5
MD5 ca575c862637f86c8350f8ca71f57fdd
BLAKE2b-256 b843427ffe6e648c50be7d54b05e5e36723aa954b314ea6215286d2cd99e7f08

See more details on using hashes here.

File details

Details for the file blosc2-0.3.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.3.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for blosc2-0.3.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8bbc0b75ab6b9c5200daeda1a7f2e403ccf47b85b7cb3e70495e0160d1f8d25c
MD5 c7f563645af850cd414814a8f661f0ac
BLAKE2b-256 89d5ac6b9acf533eb20c0ebb15d23a449a9486fbb1072790a5752468957b057a

See more details on using hashes here.

File details

Details for the file blosc2-0.3.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bbbdc750d1f77846fe6a93497c38bd469ce3a98ff2d96608f390c9b0f473bd74
MD5 8cfd3c70ead94d6f6640dd0049948702
BLAKE2b-256 ba692e7c68359ba954d56a1b99b5b358ba8a166a8bd22d0f96c982e85c49e5fe

See more details on using hashes here.

File details

Details for the file blosc2-0.3.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.3.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4a721f13388ec7962913de1243552e0df3ad507e3df6a841410f1b24a4c8f600
MD5 3d1cc76db824d72847ec067374e1f85c
BLAKE2b-256 93fa1b47467d92b471fa0f0e202d61ee27dbdf73c4d4a6327c48806ab1ed0013

See more details on using hashes here.

File details

Details for the file blosc2-0.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88092b6cd8325604dbe3bb97190f6cb5d10d28b0ca323bd69347bcfd6a8604dc
MD5 37338856d94bc4e8abe4c6d14347b13f
BLAKE2b-256 3703c3c71f5276ec45218f22e9e58c4f3260e2d00e05c21df0f4de10a16861d1

See more details on using hashes here.

File details

Details for the file blosc2-0.3.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.3.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b743a784f7fd39f047cb9c108fcfb3ca4b4e342f6906bdf34a6fe8214c3cc554
MD5 f83938634a1899c225c437b81deed2c1
BLAKE2b-256 8f947247d206bd7bcca084f8ec8eb00b84cfe25c959a297daa05464f2fb662c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page