Skip to main content

Python wrapper for the C-Blosc2 library.

Project description

A Python wrapper for the extremely fast Blosc2 compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc2

PyPi:

version

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (http://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor. Currently python-blosc2 already reproduces the API of python-blosc, so the former can be used as a drop-in replacement for the later. However, there are a few exceptions for the complete compatibility that are listed here: https://github.com/Blosc/python-blosc2/blob/main/RELEASE_NOTES.md#changes-from-python-blosc-to-python-blosc2

In addition, python-blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, serialization and all the features introduced in C-Blosc2. This is work in process and will be done incrementally in future releases.

Note: python-blosc2 is meant to be backward compatible with python-blosc data. That means that it can read data generated with python-blosc, but the opposite is not true (i.e. there is no forward compatibility).

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://blosc.org/python-blosc2/python-blosc2.html

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building

python-blosc2 comes with the Blosc sources with it and can be built with:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/pack_compress.py

Just to whet your appetite, here are some speed figures for an Intel box (i9-10940X CPU @ 3.30GHz, 14 cores) running Ubuntu 22.04. In particular, see how performance for pack_array2/unpack_array2 has improved vs the previous version (labeled as pack_array/unpack_array):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc2 version: 0.3.3.dev0
Blosc version: 2.4.2.dev ($Date:: 2022-09-16 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'zlib', 'zstd']
Compressor library versions:
  BLOSCLZ: 2.5.1
  LZ4: 1.9.4
  LZ4HC: 1.9.4
  ZLIB: 1.2.11.zlib-ng
  ZSTD: 1.5.2
Python version: 3.9.13 | packaged by conda-forge | (main, May 27 2022, 16:56:21)
[GCC 10.3.0]
Platform: Linux-5.15.0-41-generic-x86_64 (#44-Ubuntu SMP Wed Jun 22 14:20:53 UTC 2022)
Linux dist: Ubuntu 22.04 LTS
Processor: x86_64
Byte-ordering: little
Detected cores: 14.0
Number of threads to use by default: 8
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  Time for copying array with np.copy:                  0.394 s (3.79 GB/s))


*** the arange linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.051/0.101 s (29.08/14.80 GB/s))   cr: 444.3x
  Time for pack_array/unpack_array:     0.600/0.764 s (2.49/1.95 GB/s))     cr: 442.3x
  Time for pack_array2/unpack_array2:   0.059/0.158 s (25.28/9.44 GB/s))    cr: 444.2x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.059/0.116 s (25.07/12.82 GB/s))   cr: 279.2x
  Time for pack_array/unpack_array:     0.615/0.758 s (2.42/1.97 GB/s))     cr: 277.9x
  Time for pack_array2/unpack_array2:   0.058/0.160 s (25.52/9.31 GB/s))    cr: 279.2x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.193/0.085 s (7.71/17.45 GB/s))    cr: 155.9x
  Time for pack_array/unpack_array:     0.786/0.754 s (1.89/1.98 GB/s))     cr: 155.4x
  Time for pack_array2/unpack_array2:   0.218/0.165 s (6.84/9.02 GB/s))     cr: 155.9x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.250/0.141 s (5.96/10.55 GB/s))    cr: 273.8x
  Time for pack_array/unpack_array:     0.799/0.845 s (1.87/1.76 GB/s))     cr: 273.2x
  Time for pack_array2/unpack_array2:   0.261/0.243 s (5.71/6.13 GB/s))     cr: 273.8x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.189/0.079 s (7.89/18.92 GB/s))    cr: 644.9x
  Time for pack_array/unpack_array:     0.725/0.770 s (2.06/1.94 GB/s))     cr: 630.9x
  Time for pack_array2/unpack_array2:   0.206/0.143 s (7.25/10.39 GB/s))    cr: 644.8x

*** the linspace linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.091/0.113 s (16.34/13.21 GB/s))   cr:  50.1x
  Time for pack_array/unpack_array:     0.623/0.751 s (2.39/1.98 GB/s))     cr:  50.0x
  Time for pack_array2/unpack_array2:   0.124/0.163 s (11.98/9.12 GB/s))    cr:  50.1x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.077/0.114 s (19.33/13.12 GB/s))   cr:  55.7x
  Time for pack_array/unpack_array:     0.624/0.740 s (2.39/2.01 GB/s))     cr:  55.8x
  Time for pack_array2/unpack_array2:   0.098/0.190 s (15.19/7.83 GB/s))    cr:  55.7x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.352/0.075 s (4.23/19.98 GB/s))    cr:  53.6x
  Time for pack_array/unpack_array:     0.918/0.781 s (1.62/1.91 GB/s))     cr:  53.6x
  Time for pack_array2/unpack_array2:   0.389/0.139 s (3.83/10.72 GB/s))    cr:  53.6x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.395/0.148 s (3.77/10.08 GB/s))    cr:  50.4x
  Time for pack_array/unpack_array:     0.940/0.824 s (1.59/1.81 GB/s))     cr:  50.4x
  Time for pack_array2/unpack_array2:   0.433/0.252 s (3.44/5.92 GB/s))     cr:  50.4x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.402/0.098 s (3.71/15.22 GB/s))    cr:  74.7x
  Time for pack_array/unpack_array:     0.949/0.782 s (1.57/1.91 GB/s))     cr:  74.7x
  Time for pack_array2/unpack_array2:   0.426/0.175 s (3.50/8.49 GB/s))     cr:  74.7x

*** the random distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.240/0.119 s (6.22/12.48 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.578/0.162 s (2.58/9.20 GB/s))     cr:   4.0x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.250/0.114 s (5.97/13.11 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.590/0.161 s (2.53/9.24 GB/s))     cr:   4.0x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         1.102/0.088 s (1.35/17.01 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     1.690/0.758 s (0.88/1.97 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   1.445/0.178 s (1.03/8.38 GB/s))     cr:   4.0x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         1.258/0.210 s (1.18/7.11 GB/s))     cr:   4.7x
  Time for pack_array/unpack_array:     1.822/0.898 s (0.82/1.66 GB/s))     cr:   4.7x
  Time for pack_array2/unpack_array2:   1.549/0.355 s (0.96/4.20 GB/s))     cr:   4.7x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         1.653/0.098 s (0.90/15.21 GB/s))    cr:   4.4x
  Time for pack_array/unpack_array:     2.206/0.796 s (0.68/1.87 GB/s))     cr:   4.4x
  Time for pack_array2/unpack_array2:   2.077/0.179 s (0.72/8.30 GB/s))     cr:   4.4x

As can be seen, is perfectly possible for python-blosc2 to go faster than a plain memcpy(). But more interestingly, you can easily choose the codecs and filters that better adapt to your datasets, and persist and transmit them faster and using less memory.

Start using compression in your data workflows and feel the experience of doing more with less.

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE. A copy of all licenses can be found in LICENSES/.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

http://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-0.5.2.tar.gz (2.5 MB view details)

Uploaded Source

Built Distributions

blosc2-0.5.2-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc2-0.5.2-cp311-cp311-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

blosc2-0.5.2-cp311-cp311-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

blosc2-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc2-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc2-0.5.2-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc2-0.5.2-cp310-cp310-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

blosc2-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-0.5.2-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc2-0.5.2-cp39-cp39-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

blosc2-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc2-0.5.2-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc2-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

blosc2-0.5.2-cp38-cp38-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

blosc2-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

blosc2-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file blosc2-0.5.2.tar.gz.

File metadata

  • Download URL: blosc2-0.5.2.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for blosc2-0.5.2.tar.gz
Algorithm Hash digest
SHA256 f902050bb1c658c46745d5bd239dbc200bb31855c1797bceb57bf67c91119f66
MD5 67908a6653c723073d343e454ea7a9e8
BLAKE2b-256 a3343942e69483e50946eff4507085982d3ca0260ba3ed836608fc240bed2f4d

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.5.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for blosc2-0.5.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 65ca896d5a7a8aeae2f770b059efe33d622b26053ffbbb20c4ae7b6743abe694
MD5 264a6c121795b5bcd57d5da9868f3470
BLAKE2b-256 f34e73d74d6557d92188ff90a43faec796bfa78bf6828b2dc3959689ad58df38

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 77a4fe1ca76faff7ab6cb36628a464f382bf171c495db7be4d5d9e45895b50ff
MD5 a5f4d0edcb40ea5404995cb23b07f290
BLAKE2b-256 05dd988a7b988bf115115b8a9a7889fd9886e97d94fc153e00e69bbfc897ccc3

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0dd2997c5ae3054b0bb05e14eefee03383057938e9dbd3a2b776951da41bcfa4
MD5 78e5a2da6c3e7928dcabb7b047f15cfc
BLAKE2b-256 4a61426e859d6f72dce04404dcf36425cb5f1a10411a75db30d9c9871014e096

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae9e69a7d31a3323bd4847ea461df0d65e7728deb49ffe48dcd5da2c2a2aadbb
MD5 5f0c1500d80bf41d26a5eddd5c8dcdfb
BLAKE2b-256 b0a9ddac537db1c0f1dbd183f5cc3ce9a44f0241fdf489a39aea4c3be888a97f

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a3780e39f0b2be3005adf6ddb9fdb82797ff697b65b0fde7910f34b1d4c76a12
MD5 47a9335ba7ecaee26cfb89e7a9068667
BLAKE2b-256 92d10a05e23f160edb61cbbaef0d132fe41be8f919586f4c40ff1d4ee71f2358

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.5.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for blosc2-0.5.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f1b5c2ce2a1d1ff2b11acd25652b8b5babfc7907f43f698a6761192eaec531cc
MD5 84a77a9ad594e24fb3cc54a01182eef6
BLAKE2b-256 011500a8e4a4c4cadd96be4a5c7e5d8e7e73b35689972667a263fa5e856463b0

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c77445b82dffa1209fbba435b568b0205044a346e5bc380548b94e6858cf2928
MD5 e873c7e30ac865dfa7309b8a67459d27
BLAKE2b-256 be93d0b2aaa91c43905a339369a660d3f5ae4424d992ca7bd3dfd9cb67f7ecff

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4d1eee7b4e9a09c849639d37aa00d751c480da16e2a477e7ac044c84fd617d29
MD5 8bd77f28c2c80068943ce88039935c19
BLAKE2b-256 26ba1cf29aec60cacf9de64068e81af90aac5542ec802c6f18449ba76c538377

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f04fa72e8addddb1b877cca76742f77662c27ba063b81def63238e8e35b99d0e
MD5 5280095e31e4fde24f98b637b1eeb0b9
BLAKE2b-256 5ec8063a2b925b0ed9b2a933739f71faa0177311a45b87e977732dde952f75c2

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 acc3054522dd3fc9e69ca3b7722e79c7e05474bf3330cee13a6007cc0ce75d1c
MD5 78770484e8a2324d100ac748252c5f6f
BLAKE2b-256 0a842fb38cbab6e6846817fd4c5cda05e2bdd89774d0e22313adae419223dcda

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.5.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for blosc2-0.5.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 eb666de0e32ed8e3b45e6115d198c6408e2ecb12cee5f3f0bfa3f53d37b9eaaf
MD5 fedd19dc583416cbda6b0fd979297b1a
BLAKE2b-256 cbe5586ce6ad62eb1a30301fd6c5811a1604d988ce5d06ccfe8103827c3d6ee9

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cf85c8659dc99a65a83a45a54825235643de7c28ca87cac22ac07d6fc48a3bc1
MD5 d73262aeee67a5c0456654d4fde67775
BLAKE2b-256 2f9067d502bc8c9df303525508d4e5cd8f12dea499fae459286cab8bde4de20b

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 215be033bb0c26d7c65d6b11637fc86f6cb00c523553ff0c90d63ee00fcf7b0d
MD5 5311259fa02efe18574f9571850f29c1
BLAKE2b-256 7864a8ab0365ecbd2e492e4c45b74270cdda74df4ae5abd4a573a33ffdc4543f

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38351085bbf97bb66181721a4a1793f7cec9fb7fd8a7d756fe81655cf40e011f
MD5 f3dac6cede2b620faf6e730b0af8aae6
BLAKE2b-256 dc09f2e46390820b1b00aa423b66b64bd21bf610eb09d5fabccb4b77237093b5

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b4b3911afa00fcd239ec013545ce866a4b37f73198ba201291765a1c43f0a753
MD5 8a0a9743e817821f34155e60bf5a4033
BLAKE2b-256 fed58cae1aab1cb5e515263717d76034096d7889573d1b5a814a669587c3913b

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.5.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for blosc2-0.5.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 12c810bef3cad664afa42e649333e9928d3268cf117abc8790b1b1166b8ab141
MD5 c71a91954def3000bb8466bb2a391de3
BLAKE2b-256 4f7d81fcfe8bb420e0d2909ad122f2946f50041d4e392a8109a74c161920c340

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 96ea4f7f4c88aeb1b2c4c780cafd96655b548d9b518e073aaadf3f3e510475cd
MD5 f1e7c4d27b4413648ef0f74d4b33e33e
BLAKE2b-256 7be6b41e7d6145adc32792ba9c31a1abe49d724673769e4876ad1f6e9d10e66a

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 600c4979ca848e1ac509e3ef5da96a296c7468409dc7b27c84ee2b69054da933
MD5 f850e33751521003b2a5b9da2e47d734
BLAKE2b-256 b72a520ed757f85fa6ded3c274e269a3d6e640f741c201d716212731d2599363

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ffdf33ef6d5322e981006a3715ef920d333f20b570b738254504040a09bf94e6
MD5 106d7257101ba2662b8bc3048122c04a
BLAKE2b-256 7358c2991d0aa63d56da3d3d25618d71543efaf13e6c0055515484d0c0311656

See more details on using hashes here.

File details

Details for the file blosc2-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f5b9c9de46525881103f2636bf171a646d29bf70e41ea8589979da2b3b470d01
MD5 31e4b2fb6f342e2ce1f2b63a87689f5d
BLAKE2b-256 accfa00e0298ccdfd3a091d79ad8a7223e543d5a122e66a0d5f06170b25f9d3c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page