Skip to main content

Python wrapper for the C-Blosc2 library.

Project description

A Python wrapper for the extremely fast Blosc2 compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc2

PyPi:

version

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (https://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor. Currently python-blosc2 already reproduces the API of python-blosc, so the former can be used as a drop-in replacement for the later. However, there are a few exceptions for the complete compatibility that are listed here: https://github.com/Blosc/python-blosc2/blob/main/RELEASE_NOTES.md#changes-from-python-blosc-to-python-blosc2

In addition, python-blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, serialization and all the features introduced in C-Blosc2. This is work in process and will be done incrementally in future releases.

Note: python-blosc2 is meant to be backward compatible with python-blosc data. That means that it can read data generated with python-blosc, but the opposite is not true (i.e. there is no forward compatibility).

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://blosc.org/python-blosc2/python-blosc2.html

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building

python-blosc2 comes with the Blosc sources with it and can be built with:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/pack_compress.py

Just to whet your appetite, here are some speed figures for an Intel box (i9-10940X CPU @ 3.30GHz, 14 cores) running Ubuntu 22.04. In particular, see how performance for pack_array2/unpack_array2 has improved vs the previous version (labeled as pack_array/unpack_array):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc2 version: 0.3.3.dev0
Blosc version: 2.4.2.dev ($Date:: 2022-09-16 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'zlib', 'zstd']
Compressor library versions:
  BLOSCLZ: 2.5.1
  LZ4: 1.9.4
  LZ4HC: 1.9.4
  ZLIB: 1.2.11.zlib-ng
  ZSTD: 1.5.2
Python version: 3.9.13 | packaged by conda-forge | (main, May 27 2022, 16:56:21)
[GCC 10.3.0]
Platform: Linux-5.15.0-41-generic-x86_64 (#44-Ubuntu SMP Wed Jun 22 14:20:53 UTC 2022)
Linux dist: Ubuntu 22.04 LTS
Processor: x86_64
Byte-ordering: little
Detected cores: 14.0
Number of threads to use by default: 8
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  Time for copying array with np.copy:                  0.394 s (3.79 GB/s))


*** the arange linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.051/0.101 s (29.08/14.80 GB/s))   cr: 444.3x
  Time for pack_array/unpack_array:     0.600/0.764 s (2.49/1.95 GB/s))     cr: 442.3x
  Time for pack_array2/unpack_array2:   0.059/0.158 s (25.28/9.44 GB/s))    cr: 444.2x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.059/0.116 s (25.07/12.82 GB/s))   cr: 279.2x
  Time for pack_array/unpack_array:     0.615/0.758 s (2.42/1.97 GB/s))     cr: 277.9x
  Time for pack_array2/unpack_array2:   0.058/0.160 s (25.52/9.31 GB/s))    cr: 279.2x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.193/0.085 s (7.71/17.45 GB/s))    cr: 155.9x
  Time for pack_array/unpack_array:     0.786/0.754 s (1.89/1.98 GB/s))     cr: 155.4x
  Time for pack_array2/unpack_array2:   0.218/0.165 s (6.84/9.02 GB/s))     cr: 155.9x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.250/0.141 s (5.96/10.55 GB/s))    cr: 273.8x
  Time for pack_array/unpack_array:     0.799/0.845 s (1.87/1.76 GB/s))     cr: 273.2x
  Time for pack_array2/unpack_array2:   0.261/0.243 s (5.71/6.13 GB/s))     cr: 273.8x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.189/0.079 s (7.89/18.92 GB/s))    cr: 644.9x
  Time for pack_array/unpack_array:     0.725/0.770 s (2.06/1.94 GB/s))     cr: 630.9x
  Time for pack_array2/unpack_array2:   0.206/0.143 s (7.25/10.39 GB/s))    cr: 644.8x

*** the linspace linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.091/0.113 s (16.34/13.21 GB/s))   cr:  50.1x
  Time for pack_array/unpack_array:     0.623/0.751 s (2.39/1.98 GB/s))     cr:  50.0x
  Time for pack_array2/unpack_array2:   0.124/0.163 s (11.98/9.12 GB/s))    cr:  50.1x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.077/0.114 s (19.33/13.12 GB/s))   cr:  55.7x
  Time for pack_array/unpack_array:     0.624/0.740 s (2.39/2.01 GB/s))     cr:  55.8x
  Time for pack_array2/unpack_array2:   0.098/0.190 s (15.19/7.83 GB/s))    cr:  55.7x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.352/0.075 s (4.23/19.98 GB/s))    cr:  53.6x
  Time for pack_array/unpack_array:     0.918/0.781 s (1.62/1.91 GB/s))     cr:  53.6x
  Time for pack_array2/unpack_array2:   0.389/0.139 s (3.83/10.72 GB/s))    cr:  53.6x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.395/0.148 s (3.77/10.08 GB/s))    cr:  50.4x
  Time for pack_array/unpack_array:     0.940/0.824 s (1.59/1.81 GB/s))     cr:  50.4x
  Time for pack_array2/unpack_array2:   0.433/0.252 s (3.44/5.92 GB/s))     cr:  50.4x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.402/0.098 s (3.71/15.22 GB/s))    cr:  74.7x
  Time for pack_array/unpack_array:     0.949/0.782 s (1.57/1.91 GB/s))     cr:  74.7x
  Time for pack_array2/unpack_array2:   0.426/0.175 s (3.50/8.49 GB/s))     cr:  74.7x

*** the random distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.240/0.119 s (6.22/12.48 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.578/0.162 s (2.58/9.20 GB/s))     cr:   4.0x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.250/0.114 s (5.97/13.11 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.590/0.161 s (2.53/9.24 GB/s))     cr:   4.0x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         1.102/0.088 s (1.35/17.01 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     1.690/0.758 s (0.88/1.97 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   1.445/0.178 s (1.03/8.38 GB/s))     cr:   4.0x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         1.258/0.210 s (1.18/7.11 GB/s))     cr:   4.7x
  Time for pack_array/unpack_array:     1.822/0.898 s (0.82/1.66 GB/s))     cr:   4.7x
  Time for pack_array2/unpack_array2:   1.549/0.355 s (0.96/4.20 GB/s))     cr:   4.7x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         1.653/0.098 s (0.90/15.21 GB/s))    cr:   4.4x
  Time for pack_array/unpack_array:     2.206/0.796 s (0.68/1.87 GB/s))     cr:   4.4x
  Time for pack_array2/unpack_array2:   2.077/0.179 s (0.72/8.30 GB/s))     cr:   4.4x

As can be seen, is perfectly possible for python-blosc2 to go faster than a plain memcpy(). But more interestingly, you can easily choose the codecs and filters that better adapt to your datasets, and persist and transmit them faster and using less memory.

Start using compression in your data workflows and feel the experience of doing more with less.

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

https://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-0.6.1.tar.gz (2.5 MB view details)

Uploaded Source

Built Distributions

blosc2-0.6.1-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc2-0.6.1-cp311-cp311-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

blosc2-0.6.1-cp311-cp311-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

blosc2-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc2-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc2-0.6.1-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-0.6.1-cp310-cp310-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc2-0.6.1-cp310-cp310-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

blosc2-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-0.6.1-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-0.6.1-cp39-cp39-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc2-0.6.1-cp39-cp39-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

blosc2-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc2-0.6.1-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc2-0.6.1-cp38-cp38-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

blosc2-0.6.1-cp38-cp38-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

blosc2-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

blosc2-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file blosc2-0.6.1.tar.gz.

File metadata

  • Download URL: blosc2-0.6.1.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for blosc2-0.6.1.tar.gz
Algorithm Hash digest
SHA256 9447c2aad3dd531daebfd06ad7118d63464f37fec78bcfff8ff1b6a0f669b083
MD5 dfc438120823330c0f0fbf592628b3b3
BLAKE2b-256 db70953a56d79355d8a07410bfe4ffcd737dc583f600adb2112370fe2afaa86e

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for blosc2-0.6.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 be0db927ab34ee01e90faf2a373adde710ee44e7db9a6943847e836da16267dd
MD5 c320ac32803aab0210ab952285263249
BLAKE2b-256 8b4f41b7d1fa4b769b2ee06c7f5a47e4e26b66010013c6562e37fffd32fe37bc

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9ab4d720d07b7dc764208418da9ed4ca0d445243166de8c1ac4db3c965464e94
MD5 fe89bcc531eb88dd1de8c520c0389285
BLAKE2b-256 835f453bb4bec3cbd0a91340a7602a3cbbf58a044ed6b8ce2efef57411c2c020

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a4eaea3ec9247b25b05357380ea079a0c7267f1d5222b8a664de83368df694b9
MD5 d50eb32043c70c8f6d4e07040826ccc2
BLAKE2b-256 b51c5e4fa18008d37bde0fbab02b62d66094d5ff677906bc6981de9576f4b7f6

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea0c70f720b61e76210c5a1af2bc5222c1b1e031c97736366bf69272c720db35
MD5 d6c79b2953c4c9d9f05733a509327e42
BLAKE2b-256 6c5eab432183577ed946d62aeb5e264e076dd3857e0fb3f6c28623f0e36e9de2

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bc3457612ca58a8fc12298c19b0f7b6d9f473bfef1a409061d56346299f6df4e
MD5 0af027c8ccab0af905680094d4f5016e
BLAKE2b-256 036bf39536d0f1aa1bcd4ab56939168f04ba5ec3faa341bbf7ca53463421c0e7

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for blosc2-0.6.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2a7a36163889d0c1afb77d14dd591a94f450dd16233e589e2e72557767b75e4e
MD5 0fb380f8e25a81f13155149cfec004df
BLAKE2b-256 41a58ec1f8b1c89749483e67010d0bb91ef73a3c4764bef322a718853e154af2

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 badb031909eb2862065e658bf777ca2cc0cdf78d09faa20d2fb026d1171b927e
MD5 9005fea16b3a835dc9b94e6676d5e286
BLAKE2b-256 5ab48b09377fb56011d4e5d87fbffdd7988c5e60cae3b972e56848e6eb125da0

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bc5453783335397c7c979ee8ab7f6dc8d66cdfd6199c36992768d30ed369b5a1
MD5 69168e4d37c308c42949a4836e74df74
BLAKE2b-256 d259da2ef8c185dd4040201f7fb72cd1cf3262045a151adff79c8bf5e14a1820

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c35e581a5054779d6d47d9a2124908da656f25a443112c9894580e917462779
MD5 20b98621014b7364520e52896e90159d
BLAKE2b-256 1c268b947f91e3ba052a4fdeb91eeed377c2468bbc301dd00ab064bd9ecc107b

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b8bad1043c1ba9b5335cc7a9ea0166b233fdfbdd1df00a6c42784c11a635509
MD5 d7c69137a113756eb142d68ae891ab18
BLAKE2b-256 b84b155372892d5bb4b6e4c1a5dbf8a548b528061ed39ab5f37fd41cf8702423

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for blosc2-0.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a833ca864857dc6e1cc9c877e46377af111aa0d104632ac86925dbc727dfd4c0
MD5 27aba4946a1ccd71ff2fb3629cc355a0
BLAKE2b-256 e477d63d0d64574da1483f448bf8f8608bbd208bc2e210aacaf80db1aed202a2

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1a3ec62ed9710147031dda0153bbfc7806cbcc57b436feec9d7f07df3f8eee71
MD5 c8f5a8d65287e2bfb96b0237d532dac7
BLAKE2b-256 97d24a8b833d8e2a5ca6264f40b658717a055a28606b5f93aeb9c65f0717b8cd

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 adaeefb30146920c3e0dd78aca93b54c89244569e1cefb17b2dec75835d4961e
MD5 5feff4e120d132436bd001c7a3bd944c
BLAKE2b-256 df73027c6285e48e77ee9b045d0b40ebb3e1d5fde2e6afb7e5bcfb50243fd623

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b7e956bd76f318a2d4d17873acb984a1625850ffa70dcc47957b3a5367bd007
MD5 315fd4e987dc550c65b05f6bc8fa90a3
BLAKE2b-256 248f1b7b87c92071c598170dcb65f7839d1b16751189425d2a66bf7aa88482b6

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3536f4d0631c221e907d5f929f502088cabdfa6ec771917b1fd0fb3811fbf43d
MD5 9857b7a77ff550013192329e4ad1c4dc
BLAKE2b-256 25013396208e15bdb6acc02b5c9d8c42ae2e99c486afe10d6f8be28d319e8ccc

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for blosc2-0.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 85b6b72f04bb680d78af806b7d8ba671febfb163cef88b8b01020d0818368ec2
MD5 c99e1c7e3ee509ee9c18b27b28700479
BLAKE2b-256 2ca8d9a10fea319aab9703f0f33cd902086f62468779ee82ddd7f17f692d344c

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bd376759f81b0075eb079f190c474ad738d00419ff3f1a454562cfad3ab331c3
MD5 14116a3037cabafadc5c07ba9560ea6e
BLAKE2b-256 3603a01bd9873d2318b6f472f13828edb5eacbabf8bbe0efce00919432c791df

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e88ffb6313d190cddd39d90136445c557006b5f4155d43fbe348a29683ddc233
MD5 45485159c95e1a5b6514c770694edc15
BLAKE2b-256 c85318e7ed1f5697a76dae9b66a571cf63f8bd45db74c9cb2b72864f8f46a958

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 897877c025f10d460f507bf91fc661e80875dcd65924f39374168cbaec1eac38
MD5 65df47a2e844b261bda59ff0a27c1cea
BLAKE2b-256 f10b7ba7c2392bc41ba4e041211ca2378eadb42415d3bf7b8d17e9c1b0067ebc

See more details on using hashes here.

File details

Details for the file blosc2-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b126ebce5e85d3df130bb316c233f9ce9c1d0a3d8fab122d2398d169087ec384
MD5 78088c9e7d2d2b385b4c709b2ef867fe
BLAKE2b-256 9cdd871b255c1296e7e83259beaaa0008c1b9e8c6db2cc75b469079eb57511ad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page