Skip to main content

Python wrapper for the C-Blosc2 library.

Project description

A Python wrapper for the extremely fast Blosc2 compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc2

PyPi:

version

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (https://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor. Currently python-blosc2 already reproduces the API of python-blosc, so the former can be used as a drop-in replacement for the later. However, there are a few exceptions for the complete compatibility that are listed here: https://github.com/Blosc/python-blosc2/blob/main/RELEASE_NOTES.md#changes-from-python-blosc-to-python-blosc2

In addition, python-blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, serialization and all the features introduced in C-Blosc2. This is work in process and will be done incrementally in future releases.

Note: python-blosc2 is meant to be backward compatible with python-blosc data. That means that it can read data generated with python-blosc, but the opposite is not true (i.e. there is no forward compatibility).

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://blosc.org/python-blosc2/python-blosc2.html

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building

python-blosc2 comes with the Blosc sources with it and can be built with:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/pack_compress.py

Just to whet your appetite, here are some speed figures for an Intel box (i9-10940X CPU @ 3.30GHz, 14 cores) running Ubuntu 22.04. In particular, see how performance for pack_array2/unpack_array2 has improved vs the previous version (labeled as pack_array/unpack_array):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc2 version: 0.3.3.dev0
Blosc version: 2.4.2.dev ($Date:: 2022-09-16 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'zlib', 'zstd']
Compressor library versions:
  BLOSCLZ: 2.5.1
  LZ4: 1.9.4
  LZ4HC: 1.9.4
  ZLIB: 1.2.11.zlib-ng
  ZSTD: 1.5.2
Python version: 3.9.13 | packaged by conda-forge | (main, May 27 2022, 16:56:21)
[GCC 10.3.0]
Platform: Linux-5.15.0-41-generic-x86_64 (#44-Ubuntu SMP Wed Jun 22 14:20:53 UTC 2022)
Linux dist: Ubuntu 22.04 LTS
Processor: x86_64
Byte-ordering: little
Detected cores: 14.0
Number of threads to use by default: 8
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  Time for copying array with np.copy:                  0.394 s (3.79 GB/s))


*** the arange linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.051/0.101 s (29.08/14.80 GB/s))   cr: 444.3x
  Time for pack_array/unpack_array:     0.600/0.764 s (2.49/1.95 GB/s))     cr: 442.3x
  Time for pack_array2/unpack_array2:   0.059/0.158 s (25.28/9.44 GB/s))    cr: 444.2x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.059/0.116 s (25.07/12.82 GB/s))   cr: 279.2x
  Time for pack_array/unpack_array:     0.615/0.758 s (2.42/1.97 GB/s))     cr: 277.9x
  Time for pack_array2/unpack_array2:   0.058/0.160 s (25.52/9.31 GB/s))    cr: 279.2x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.193/0.085 s (7.71/17.45 GB/s))    cr: 155.9x
  Time for pack_array/unpack_array:     0.786/0.754 s (1.89/1.98 GB/s))     cr: 155.4x
  Time for pack_array2/unpack_array2:   0.218/0.165 s (6.84/9.02 GB/s))     cr: 155.9x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.250/0.141 s (5.96/10.55 GB/s))    cr: 273.8x
  Time for pack_array/unpack_array:     0.799/0.845 s (1.87/1.76 GB/s))     cr: 273.2x
  Time for pack_array2/unpack_array2:   0.261/0.243 s (5.71/6.13 GB/s))     cr: 273.8x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.189/0.079 s (7.89/18.92 GB/s))    cr: 644.9x
  Time for pack_array/unpack_array:     0.725/0.770 s (2.06/1.94 GB/s))     cr: 630.9x
  Time for pack_array2/unpack_array2:   0.206/0.143 s (7.25/10.39 GB/s))    cr: 644.8x

*** the linspace linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.091/0.113 s (16.34/13.21 GB/s))   cr:  50.1x
  Time for pack_array/unpack_array:     0.623/0.751 s (2.39/1.98 GB/s))     cr:  50.0x
  Time for pack_array2/unpack_array2:   0.124/0.163 s (11.98/9.12 GB/s))    cr:  50.1x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.077/0.114 s (19.33/13.12 GB/s))   cr:  55.7x
  Time for pack_array/unpack_array:     0.624/0.740 s (2.39/2.01 GB/s))     cr:  55.8x
  Time for pack_array2/unpack_array2:   0.098/0.190 s (15.19/7.83 GB/s))    cr:  55.7x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.352/0.075 s (4.23/19.98 GB/s))    cr:  53.6x
  Time for pack_array/unpack_array:     0.918/0.781 s (1.62/1.91 GB/s))     cr:  53.6x
  Time for pack_array2/unpack_array2:   0.389/0.139 s (3.83/10.72 GB/s))    cr:  53.6x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.395/0.148 s (3.77/10.08 GB/s))    cr:  50.4x
  Time for pack_array/unpack_array:     0.940/0.824 s (1.59/1.81 GB/s))     cr:  50.4x
  Time for pack_array2/unpack_array2:   0.433/0.252 s (3.44/5.92 GB/s))     cr:  50.4x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.402/0.098 s (3.71/15.22 GB/s))    cr:  74.7x
  Time for pack_array/unpack_array:     0.949/0.782 s (1.57/1.91 GB/s))     cr:  74.7x
  Time for pack_array2/unpack_array2:   0.426/0.175 s (3.50/8.49 GB/s))     cr:  74.7x

*** the random distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.240/0.119 s (6.22/12.48 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.578/0.162 s (2.58/9.20 GB/s))     cr:   4.0x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.250/0.114 s (5.97/13.11 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.590/0.161 s (2.53/9.24 GB/s))     cr:   4.0x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         1.102/0.088 s (1.35/17.01 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     1.690/0.758 s (0.88/1.97 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   1.445/0.178 s (1.03/8.38 GB/s))     cr:   4.0x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         1.258/0.210 s (1.18/7.11 GB/s))     cr:   4.7x
  Time for pack_array/unpack_array:     1.822/0.898 s (0.82/1.66 GB/s))     cr:   4.7x
  Time for pack_array2/unpack_array2:   1.549/0.355 s (0.96/4.20 GB/s))     cr:   4.7x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         1.653/0.098 s (0.90/15.21 GB/s))    cr:   4.4x
  Time for pack_array/unpack_array:     2.206/0.796 s (0.68/1.87 GB/s))     cr:   4.4x
  Time for pack_array2/unpack_array2:   2.077/0.179 s (0.72/8.30 GB/s))     cr:   4.4x

As can be seen, is perfectly possible for python-blosc2 to go faster than a plain memcpy(). But more interestingly, you can easily choose the codecs and filters that better adapt to your datasets, and persist and transmit them faster and using less memory.

Start using compression in your data workflows and feel the experience of doing more with less.

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

https://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-0.6.2.tar.gz (2.5 MB view details)

Uploaded Source

Built Distributions

blosc2-0.6.2-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc2-0.6.2-cp311-cp311-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

blosc2-0.6.2-cp311-cp311-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

blosc2-0.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc2-0.6.2-cp311-cp311-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc2-0.6.2-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-0.6.2-cp310-cp310-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc2-0.6.2-cp310-cp310-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

blosc2-0.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-0.6.2-cp310-cp310-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-0.6.2-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-0.6.2-cp39-cp39-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc2-0.6.2-cp39-cp39-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

blosc2-0.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-0.6.2-cp39-cp39-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc2-0.6.2-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc2-0.6.2-cp38-cp38-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

blosc2-0.6.2-cp38-cp38-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

blosc2-0.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

blosc2-0.6.2-cp38-cp38-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file blosc2-0.6.2.tar.gz.

File metadata

  • Download URL: blosc2-0.6.2.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.2.tar.gz
Algorithm Hash digest
SHA256 93a7f9d412f1754e60e224edc36db652de2fcea74f850d830a1162556f945a76
MD5 ec8518af47a889aeec21545fb6a94667
BLAKE2b-256 c75e5267c5d92150b18d962563d500b055f25efadd31718728cbfa9cd6bc9a7e

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5b60f67fd03156567c64d2d317cc49ec8bf8c0052a5b9b3f9d48044295b10abf
MD5 288c1802b32c09cccb2ad06fbb07a8d4
BLAKE2b-256 5d4500557038fd3e8f4a56dd699740ef357205c4d6d8eaddf17bd6d5d16912f1

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c6cf5d3b9a33d73c0ffdf985a4a92ce670a717eb2bcff7fdbaced7866c43c955
MD5 aa0000264396ee3afce1d5c562987fd5
BLAKE2b-256 3a61dad2d4fbf5766c2a7c27dba59af51df24b63f8b0e64362caf1c579c15e87

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b038f4c82a169a3d539c71f7d85f6b22d5734141e78925afa3e355fe622276bd
MD5 57078f73cbc2510746f46b093f07f983
BLAKE2b-256 ff6efc6f4ea3da86c426261d25e37f2b4f49794f27877ffa4d59f0610bade3a9

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c9df7850e45d8f6b28cbe414437dc16d0f891f3fd9fe135cd89fe9a7af82262c
MD5 81af2c28177ae4b4ac3d2bb1c508e6c2
BLAKE2b-256 0bdadbe6587386dd42883e505ea5d274dc17313a8fbe3cb55b6b274c6972160d

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9ba2865283b326cea18b7d4bd5a73dde6b14f684d46c900aff4974fb0b796c7
MD5 6c57fe7d1dd3b0b4b85b6c3d4e630fea
BLAKE2b-256 b10ccd86fbcdbce5547c43566152ea2b17f4912007ecb7812da77344e4918b65

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ee0ff7e17998e4a37e36e8ea10be16abc75233e7589f99cef406c509dbad7be2
MD5 bf9e57c16c466c43c72accd53ebe9754
BLAKE2b-256 297fa55003e10083090feeb7a46319cd9460fded7920dea7af3bd2655c841d8b

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2c3db1aa4f89fe190cf87735ddb0f5d7ed3892201ecde513a55cff430a19a4f2
MD5 b840a02c0cd23dfcb7b031bc71d439d0
BLAKE2b-256 6c5bb821d4623362590daba373f48b541e5e7855fb186da55a5d0fa5c333e056

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9f2f87dda69728d1f14ccb4f00e77b8a2297438e80220a54d63d9a58743352a8
MD5 35290aa6c936ec2c94f4440f45bc4813
BLAKE2b-256 7e3af8b50511b539ab604a45eeb47991d5514eb974ea1fafbf6d9ac78e64dabd

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0b473f2aec811f6ec43dd71f9f8aef2ea2d8934beb49816db1d7c7314adf03f
MD5 399718365dc9ab4cfbedc017dbb257ca
BLAKE2b-256 1b248ad1e601d14666e9dc553817a51e1eb333e526d51077525517ab1a38ec86

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6870ae86fd6fe83b5f3bdd9398e1350fd67b745b99b6993200bdbcc050d158d9
MD5 5832f0c9632f263ff9811d9ce5402362
BLAKE2b-256 51512df746dd672e987a837ce415bbd2fa48e486030a253dce06d7a38449b610

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6a98d3afdafb112142fb5a38a63a099e71dc6da364c78f838a124ce360f7ccb0
MD5 d386caa5cc4345772dbff4bfbd96a57d
BLAKE2b-256 330b0e98f2d3918d16d294aaa2e387e85b0f580c1eebffbbc7b2655dc2a7ee8b

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c222674e80f304d7c5a006ac8a690148e2cc9eacd3850f1908b229034653697b
MD5 12d18fc4f57ee344676384d539da2847
BLAKE2b-256 2b76fa7015b0d88d67bc47d69f4d6fd2ecbeb5620b3892aaf5e56a2f45e8e8e4

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 368c236e0a7823f4728b135837c4ded23fde740c0cf13ff1a3705fc1f7e664a7
MD5 87ee5739cdd0d818c061d82c74bee3b6
BLAKE2b-256 20be998fb6156708d44aaffd8e9255968070526aea22ff84df185e1e41673a78

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc871a510c01c896ecb315e776587e553264854b82244396061eaf2e1295e8d8
MD5 9c5df6960e86056042547e2527e2de42
BLAKE2b-256 81bd76df0eefb037ac01215780680e062a7b33c92c44d21ad49d5873b8a2a6e6

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d27b6d7aee14a5855dcf53f055be16557cf4e1f200a3f068ca9c1637fcb27fe7
MD5 78a81e1184255015d666249deefe1b57
BLAKE2b-256 686879358e364c8dfb948b332af9cf300c37aeee93978d11b556e67f80dc06fe

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 edc6cfdc5fbe84cde3e37e6af803133bc3b79e34508391b16b14c429b6a7796c
MD5 707fd7a86bd2632642ea54fa84bd1200
BLAKE2b-256 6fb77ef17e90c269ed330dec8f358b1f947ce72f932833c9af8eb83b269155d7

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c9399099e0c047979d100be713fe254e67a09dfff986e01b952081e189f226b1
MD5 869ceb579037e4b7c25aa15f07598b40
BLAKE2b-256 6ea88295df775faa6c964914448cdf9d7cfa2ba87ba98e887700cf3469b57bbe

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c10a9963fe45787176fadc8a41d2a3037bc5fe7def3dd7da275c948021b85462
MD5 73658628aa7146c6808b10701e099732
BLAKE2b-256 0db84708b650a7b4595845d266a8f9b58c25a388dfd4ee07715169fede2344c9

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67a1fa3e1ed85feda698045f593c4369b22f264883512b14986928fb248216e6
MD5 6cd2e1f8f140d31c92c36b8f9d8573ad
BLAKE2b-256 31d113731f69e612dc830e5c7c95ff5fbcc0fe546af5d688ca6e2b3cc9061545

See more details on using hashes here.

File details

Details for the file blosc2-0.6.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 45e1385176f9decd097ffa117971eac5255bf6a4b72906a33055f2f354e307da
MD5 2efa54e84a75114464829280c91f5912
BLAKE2b-256 3d01a43ae55a9382112c73f0e610a6ed612a5db2aa34f2ada277b79bff22483b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page