Skip to main content

Python wrapper for the C-Blosc2 library.

Project description

A Python wrapper for the extremely fast Blosc2 compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc2

PyPi:

version

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (https://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor. Currently python-blosc2 already reproduces the API of python-blosc, so the former can be used as a drop-in replacement for the later. However, there are a few exceptions for the complete compatibility that are listed here: https://github.com/Blosc/python-blosc2/blob/main/RELEASE_NOTES.md#changes-from-python-blosc-to-python-blosc2

In addition, python-blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, serialization and all the features introduced in C-Blosc2. This is work in process and will be done incrementally in future releases.

Note: python-blosc2 is meant to be backward compatible with python-blosc data. That means that it can read data generated with python-blosc, but the opposite is not true (i.e. there is no forward compatibility).

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://blosc.org/python-blosc2/python-blosc2.html

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building

python-blosc2 comes with the Blosc sources with it and can be built with:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/pack_compress.py

Just to whet your appetite, here are some speed figures for an Intel box (i9-10940X CPU @ 3.30GHz, 14 cores) running Ubuntu 22.04. In particular, see how performance for pack_array2/unpack_array2 has improved vs the previous version (labeled as pack_array/unpack_array):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc2 version: 0.3.3.dev0
Blosc version: 2.4.2.dev ($Date:: 2022-09-16 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'zlib', 'zstd']
Compressor library versions:
  BLOSCLZ: 2.5.1
  LZ4: 1.9.4
  LZ4HC: 1.9.4
  ZLIB: 1.2.11.zlib-ng
  ZSTD: 1.5.2
Python version: 3.9.13 | packaged by conda-forge | (main, May 27 2022, 16:56:21)
[GCC 10.3.0]
Platform: Linux-5.15.0-41-generic-x86_64 (#44-Ubuntu SMP Wed Jun 22 14:20:53 UTC 2022)
Linux dist: Ubuntu 22.04 LTS
Processor: x86_64
Byte-ordering: little
Detected cores: 14.0
Number of threads to use by default: 8
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  Time for copying array with np.copy:                  0.394 s (3.79 GB/s))


*** the arange linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.051/0.101 s (29.08/14.80 GB/s))   cr: 444.3x
  Time for pack_array/unpack_array:     0.600/0.764 s (2.49/1.95 GB/s))     cr: 442.3x
  Time for pack_array2/unpack_array2:   0.059/0.158 s (25.28/9.44 GB/s))    cr: 444.2x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.059/0.116 s (25.07/12.82 GB/s))   cr: 279.2x
  Time for pack_array/unpack_array:     0.615/0.758 s (2.42/1.97 GB/s))     cr: 277.9x
  Time for pack_array2/unpack_array2:   0.058/0.160 s (25.52/9.31 GB/s))    cr: 279.2x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.193/0.085 s (7.71/17.45 GB/s))    cr: 155.9x
  Time for pack_array/unpack_array:     0.786/0.754 s (1.89/1.98 GB/s))     cr: 155.4x
  Time for pack_array2/unpack_array2:   0.218/0.165 s (6.84/9.02 GB/s))     cr: 155.9x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.250/0.141 s (5.96/10.55 GB/s))    cr: 273.8x
  Time for pack_array/unpack_array:     0.799/0.845 s (1.87/1.76 GB/s))     cr: 273.2x
  Time for pack_array2/unpack_array2:   0.261/0.243 s (5.71/6.13 GB/s))     cr: 273.8x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.189/0.079 s (7.89/18.92 GB/s))    cr: 644.9x
  Time for pack_array/unpack_array:     0.725/0.770 s (2.06/1.94 GB/s))     cr: 630.9x
  Time for pack_array2/unpack_array2:   0.206/0.143 s (7.25/10.39 GB/s))    cr: 644.8x

*** the linspace linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.091/0.113 s (16.34/13.21 GB/s))   cr:  50.1x
  Time for pack_array/unpack_array:     0.623/0.751 s (2.39/1.98 GB/s))     cr:  50.0x
  Time for pack_array2/unpack_array2:   0.124/0.163 s (11.98/9.12 GB/s))    cr:  50.1x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.077/0.114 s (19.33/13.12 GB/s))   cr:  55.7x
  Time for pack_array/unpack_array:     0.624/0.740 s (2.39/2.01 GB/s))     cr:  55.8x
  Time for pack_array2/unpack_array2:   0.098/0.190 s (15.19/7.83 GB/s))    cr:  55.7x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.352/0.075 s (4.23/19.98 GB/s))    cr:  53.6x
  Time for pack_array/unpack_array:     0.918/0.781 s (1.62/1.91 GB/s))     cr:  53.6x
  Time for pack_array2/unpack_array2:   0.389/0.139 s (3.83/10.72 GB/s))    cr:  53.6x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.395/0.148 s (3.77/10.08 GB/s))    cr:  50.4x
  Time for pack_array/unpack_array:     0.940/0.824 s (1.59/1.81 GB/s))     cr:  50.4x
  Time for pack_array2/unpack_array2:   0.433/0.252 s (3.44/5.92 GB/s))     cr:  50.4x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.402/0.098 s (3.71/15.22 GB/s))    cr:  74.7x
  Time for pack_array/unpack_array:     0.949/0.782 s (1.57/1.91 GB/s))     cr:  74.7x
  Time for pack_array2/unpack_array2:   0.426/0.175 s (3.50/8.49 GB/s))     cr:  74.7x

*** the random distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.240/0.119 s (6.22/12.48 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.578/0.162 s (2.58/9.20 GB/s))     cr:   4.0x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.250/0.114 s (5.97/13.11 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.590/0.161 s (2.53/9.24 GB/s))     cr:   4.0x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         1.102/0.088 s (1.35/17.01 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     1.690/0.758 s (0.88/1.97 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   1.445/0.178 s (1.03/8.38 GB/s))     cr:   4.0x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         1.258/0.210 s (1.18/7.11 GB/s))     cr:   4.7x
  Time for pack_array/unpack_array:     1.822/0.898 s (0.82/1.66 GB/s))     cr:   4.7x
  Time for pack_array2/unpack_array2:   1.549/0.355 s (0.96/4.20 GB/s))     cr:   4.7x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         1.653/0.098 s (0.90/15.21 GB/s))    cr:   4.4x
  Time for pack_array/unpack_array:     2.206/0.796 s (0.68/1.87 GB/s))     cr:   4.4x
  Time for pack_array2/unpack_array2:   2.077/0.179 s (0.72/8.30 GB/s))     cr:   4.4x

As can be seen, is perfectly possible for python-blosc2 to go faster than a plain memcpy(). But more interestingly, you can easily choose the codecs and filters that better adapt to your datasets, and persist and transmit them faster and using less memory.

Start using compression in your data workflows and feel the experience of doing more with less.

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

https://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-0.6.3.tar.gz (2.5 MB view details)

Uploaded Source

Built Distributions

blosc2-0.6.3-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc2-0.6.3-cp311-cp311-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

blosc2-0.6.3-cp311-cp311-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

blosc2-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc2-0.6.3-cp311-cp311-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc2-0.6.3-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-0.6.3-cp310-cp310-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc2-0.6.3-cp310-cp310-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

blosc2-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-0.6.3-cp310-cp310-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-0.6.3-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-0.6.3-cp39-cp39-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc2-0.6.3-cp39-cp39-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

blosc2-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-0.6.3-cp39-cp39-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc2-0.6.3-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc2-0.6.3-cp38-cp38-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

blosc2-0.6.3-cp38-cp38-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

blosc2-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

blosc2-0.6.3-cp38-cp38-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file blosc2-0.6.3.tar.gz.

File metadata

  • Download URL: blosc2-0.6.3.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.3.tar.gz
Algorithm Hash digest
SHA256 bae78862c589282f929dfbfd003975dd960abfabf99754e2fa50fdb173ed3765
MD5 589fa0935fdea5c7378afbabe2b14019
BLAKE2b-256 27c117f701272307750b85fb5de5f315ee2035c699012a802b9919633c6d223b

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bd1e1ae348202b36d800ea3bf842efaf9ce868fe5c80f96f532c0791047f11a2
MD5 b4ab44aff5a986a55aaab21429f99679
BLAKE2b-256 1609ded68a6dea822e71f1920c51a07111a2876bd646bc692afe501d5e6f95e4

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1b080242ed712536f8a993bbb47c5f4e66e5c6220618dbe81ef4a4818ab92c46
MD5 aeca3e1f7ee61212e2a187a73f771313
BLAKE2b-256 a11d7570ea7b4a47b916b6fb07a2cdddcbb06d9bda926830a92b3f666a6d9c66

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 027786b20e7a04d93d3f0cdea378e4e8fb01445663e6c3bcc46d760b7ecca162
MD5 c7a85c81ca9da5b91227f5fa7daed6e3
BLAKE2b-256 933c18295aef7d2657604877f0464e51defc0e5502c94a7d3cfe96d60ef76139

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d527eb6d7a070f5760dec67b8c260ac63a0ec6687721f2f6e9d37ca426e17ff
MD5 5eb0d72b377aa6674162014a126d6695
BLAKE2b-256 e2354ab24085ed21a9235110be9d7325e6eb06aadb30073ac91ea8390ecd10ea

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 253a26c64c7ac0c9d032dfb9ef432e470bfff00d3a557d0a92b69e4adcddb72a
MD5 47a56baa6ade0ad0f90902f6d2aea62e
BLAKE2b-256 057de6507783ad60c4dd4c8b48f60bcf8c31dd586ef0d4ea833860b42ac6df99

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9e70fbd7b7792aedd08a84f66f9547b3fbe3930ab3b8511f44c3faa463ea5cf8
MD5 b01da355af2c60dac130887d4317edf3
BLAKE2b-256 50ac881ee6897706e779054cf4f5f9d322580d1c4f1e368d4f74d3abb067e009

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ef0769c3125f4eb2b504b1f706ca6734fe43e81e74540c665d7a93877a0b9116
MD5 8349728c1b10539090f5fecbf66189f5
BLAKE2b-256 d6fa612f463850e8a9caf3876c9cde48c72c2bf00862c28225a8819dff0c3191

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fb8b38885cf7aad691018456da91652b6de9c943ae1057e00ebe6870b0e8d1bf
MD5 2e6dafd9f15f93b754debdb6c20d1ba1
BLAKE2b-256 f85f3a291df6a1b1c689b11d6efd87a554ea34ec761d44f48d5b093d1245bf9c

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8af69a065431e3f9d88b3476e0bde2b6be0072cbd5783f721a12fe0934c05f8
MD5 d886a523ec564af2590611458588202f
BLAKE2b-256 7cf5b7f3abca954d95eead196beb53f3319e2ab30d8848ab641e90c2c33f5beb

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c65f3407dcb959957672ce15a6f5967ed89123dc93641323b767fbc8d5d57f02
MD5 269d2cb4bd4b959f8aa412e8c69280b6
BLAKE2b-256 93ae225e0cbfa33f371ef65ebc51c72d6867619084821f3a9b3259df72f2d16c

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ea36b324e23021adcd3273b65e25a36a4598fbc4090dd739f4e133dfb09835b5
MD5 b927a16674106961f34d7854e2cde958
BLAKE2b-256 133e932f5691813925d9e12dc7c9927a5cc53925f285684d3ab36a985823081f

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 080654a5849e7b7de4f1e93e9a7d58a023fbae30ee3f0c9e3197d83919f0c5b9
MD5 476ccdf3579e55a0f425bb9d44f6c46a
BLAKE2b-256 76cf5a6a91733af0846c597e59141e524a56c5e9356c3da7df082c123b4fad30

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1fa6e84a1fe39b69aa414def063f637464eff0483a01f7941018c923832169e7
MD5 8c6ce2d6c7d486d8cd0a1706a96509ad
BLAKE2b-256 75a1bc449094658fbded6e79c289a4a4916b4cba845a6b9285134659b8f402dc

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68e75bde73511725f3f00d8875e39899feb8257ab41f0c113923afd2f13f4c81
MD5 a3ea2e3f839a59e9a32b5ef8df1c46dd
BLAKE2b-256 36ba09aa05438f6596ee2637d0d581cbe73ad47abe4f044fe171ce3b2de2163c

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6fc0a24093691b4a879f67bcfef611630fc00e1caecaba8a62a3ab738f284587
MD5 7f5a4ec3098ae6465ed90158c29ef6ab
BLAKE2b-256 002173691455b8ac3c0d01fe844920bda524046bd10cd32a5dd5fb21ec8c9a13

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0c68ca0bd6b474c4d216306367a2407b8ab3821ffbf5cdafdb51e56e982ebc9e
MD5 ad64a5427390cdf54fba2c2965894e28
BLAKE2b-256 e3e7dac5bf27b825c87502691c4a40d912eb8b90b302131d53bef811cf930708

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6a59c70c1e30e552fe298792f45b17bcb208f240ba5afd23f1934d8b9c5b7f8f
MD5 ca01bc039e9087ed64a44e713c460b58
BLAKE2b-256 aec952a2bfb8639c7427d901a75fe213519b22e822bfaaa93d8d43ae4073bcc4

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5c1f9a261392bdd50ea9b9336af77133aeb25317fed1e543b92a5c4aa33f5818
MD5 3b1a5cb3dfee982fd5e86620fd21b20f
BLAKE2b-256 48002ff8644af0474d272c78d72c3cba6c3059280223a4410388c4cdd3f9a69a

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 852fb7c459b7a1e2746b4f9dfa10617dd3bfe9517b30d143f1ebf75900fd67e3
MD5 0bf90db87d04732cd568cc6c046791bc
BLAKE2b-256 6725ef19da7b6488613779bb3cef71c3d0e1caef64f914b5bcf91fe42f52ed2c

See more details on using hashes here.

File details

Details for the file blosc2-0.6.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 859872d29068bfb3c4c00077686e6e0e041daa10e0e81d7d918824418be5bba3
MD5 2c882475093d142373bf624725a55241
BLAKE2b-256 c77e7353587c21f26bc99af015c0357b120e19ec8004b0aca487e7db38c4a0ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page