Skip to main content

Python wrapper for the C-Blosc2 library.

Project description

A Python wrapper for the extremely fast Blosc2 compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc2

PyPi:

version

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (https://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor. Currently python-blosc2 already reproduces the API of python-blosc, so the former can be used as a drop-in replacement for the later. However, there are a few exceptions for the complete compatibility that are listed here: https://github.com/Blosc/python-blosc2/blob/main/RELEASE_NOTES.md#changes-from-python-blosc-to-python-blosc2

In addition, python-blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, serialization and all the features introduced in C-Blosc2. This is work in process and will be done incrementally in future releases.

Note: python-blosc2 is meant to be backward compatible with python-blosc data. That means that it can read data generated with python-blosc, but the opposite is not true (i.e. there is no forward compatibility).

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://blosc.org/python-blosc2/python-blosc2.html

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building

python-blosc2 comes with the Blosc sources with it and can be built with:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/pack_compress.py

Just to whet your appetite, here are some speed figures for an Intel box (i9-10940X CPU @ 3.30GHz, 14 cores) running Ubuntu 22.04. In particular, see how performance for pack_array2/unpack_array2 has improved vs the previous version (labeled as pack_array/unpack_array):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc2 version: 0.3.3.dev0
Blosc version: 2.4.2.dev ($Date:: 2022-09-16 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'zlib', 'zstd']
Compressor library versions:
  BLOSCLZ: 2.5.1
  LZ4: 1.9.4
  LZ4HC: 1.9.4
  ZLIB: 1.2.11.zlib-ng
  ZSTD: 1.5.2
Python version: 3.9.13 | packaged by conda-forge | (main, May 27 2022, 16:56:21)
[GCC 10.3.0]
Platform: Linux-5.15.0-41-generic-x86_64 (#44-Ubuntu SMP Wed Jun 22 14:20:53 UTC 2022)
Linux dist: Ubuntu 22.04 LTS
Processor: x86_64
Byte-ordering: little
Detected cores: 14.0
Number of threads to use by default: 8
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  Time for copying array with np.copy:                  0.394 s (3.79 GB/s))


*** the arange linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.051/0.101 s (29.08/14.80 GB/s))   cr: 444.3x
  Time for pack_array/unpack_array:     0.600/0.764 s (2.49/1.95 GB/s))     cr: 442.3x
  Time for pack_array2/unpack_array2:   0.059/0.158 s (25.28/9.44 GB/s))    cr: 444.2x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.059/0.116 s (25.07/12.82 GB/s))   cr: 279.2x
  Time for pack_array/unpack_array:     0.615/0.758 s (2.42/1.97 GB/s))     cr: 277.9x
  Time for pack_array2/unpack_array2:   0.058/0.160 s (25.52/9.31 GB/s))    cr: 279.2x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.193/0.085 s (7.71/17.45 GB/s))    cr: 155.9x
  Time for pack_array/unpack_array:     0.786/0.754 s (1.89/1.98 GB/s))     cr: 155.4x
  Time for pack_array2/unpack_array2:   0.218/0.165 s (6.84/9.02 GB/s))     cr: 155.9x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.250/0.141 s (5.96/10.55 GB/s))    cr: 273.8x
  Time for pack_array/unpack_array:     0.799/0.845 s (1.87/1.76 GB/s))     cr: 273.2x
  Time for pack_array2/unpack_array2:   0.261/0.243 s (5.71/6.13 GB/s))     cr: 273.8x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.189/0.079 s (7.89/18.92 GB/s))    cr: 644.9x
  Time for pack_array/unpack_array:     0.725/0.770 s (2.06/1.94 GB/s))     cr: 630.9x
  Time for pack_array2/unpack_array2:   0.206/0.143 s (7.25/10.39 GB/s))    cr: 644.8x

*** the linspace linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.091/0.113 s (16.34/13.21 GB/s))   cr:  50.1x
  Time for pack_array/unpack_array:     0.623/0.751 s (2.39/1.98 GB/s))     cr:  50.0x
  Time for pack_array2/unpack_array2:   0.124/0.163 s (11.98/9.12 GB/s))    cr:  50.1x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.077/0.114 s (19.33/13.12 GB/s))   cr:  55.7x
  Time for pack_array/unpack_array:     0.624/0.740 s (2.39/2.01 GB/s))     cr:  55.8x
  Time for pack_array2/unpack_array2:   0.098/0.190 s (15.19/7.83 GB/s))    cr:  55.7x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.352/0.075 s (4.23/19.98 GB/s))    cr:  53.6x
  Time for pack_array/unpack_array:     0.918/0.781 s (1.62/1.91 GB/s))     cr:  53.6x
  Time for pack_array2/unpack_array2:   0.389/0.139 s (3.83/10.72 GB/s))    cr:  53.6x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.395/0.148 s (3.77/10.08 GB/s))    cr:  50.4x
  Time for pack_array/unpack_array:     0.940/0.824 s (1.59/1.81 GB/s))     cr:  50.4x
  Time for pack_array2/unpack_array2:   0.433/0.252 s (3.44/5.92 GB/s))     cr:  50.4x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.402/0.098 s (3.71/15.22 GB/s))    cr:  74.7x
  Time for pack_array/unpack_array:     0.949/0.782 s (1.57/1.91 GB/s))     cr:  74.7x
  Time for pack_array2/unpack_array2:   0.426/0.175 s (3.50/8.49 GB/s))     cr:  74.7x

*** the random distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.240/0.119 s (6.22/12.48 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.578/0.162 s (2.58/9.20 GB/s))     cr:   4.0x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.250/0.114 s (5.97/13.11 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.590/0.161 s (2.53/9.24 GB/s))     cr:   4.0x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         1.102/0.088 s (1.35/17.01 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     1.690/0.758 s (0.88/1.97 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   1.445/0.178 s (1.03/8.38 GB/s))     cr:   4.0x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         1.258/0.210 s (1.18/7.11 GB/s))     cr:   4.7x
  Time for pack_array/unpack_array:     1.822/0.898 s (0.82/1.66 GB/s))     cr:   4.7x
  Time for pack_array2/unpack_array2:   1.549/0.355 s (0.96/4.20 GB/s))     cr:   4.7x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         1.653/0.098 s (0.90/15.21 GB/s))    cr:   4.4x
  Time for pack_array/unpack_array:     2.206/0.796 s (0.68/1.87 GB/s))     cr:   4.4x
  Time for pack_array2/unpack_array2:   2.077/0.179 s (0.72/8.30 GB/s))     cr:   4.4x

As can be seen, is perfectly possible for python-blosc2 to go faster than a plain memcpy(). But more interestingly, you can easily choose the codecs and filters that better adapt to your datasets, and persist and transmit them faster and using less memory.

Start using compression in your data workflows and feel the experience of doing more with less.

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

https://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-0.6.4.tar.gz (2.5 MB view details)

Uploaded Source

Built Distributions

blosc2-0.6.4-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc2-0.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc2-0.6.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

blosc2-0.6.4-cp311-cp311-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc2-0.6.4-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-0.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-0.6.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

blosc2-0.6.4-cp310-cp310-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-0.6.4-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-0.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-0.6.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc2-0.6.4-cp39-cp39-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc2-0.6.4-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc2-0.6.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

blosc2-0.6.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

blosc2-0.6.4-cp38-cp38-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file blosc2-0.6.4.tar.gz.

File metadata

  • Download URL: blosc2-0.6.4.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.4.tar.gz
Algorithm Hash digest
SHA256 1673250e2c4ef18d02baf561e0740404c4a5bc482503fb91032a8d32f769fbad
MD5 e08a152fa9608d5db9ac7449090a45d4
BLAKE2b-256 b620128ee643ac363f8cd5bad36877a26959de4955fe64a16b62dcabe2b01334

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2e34f1e6474ec9071499928f1727d21cac426157671a60b4e14923271ce6b929
MD5 089f3e267949243500d22a6f7c9667bc
BLAKE2b-256 473902bc43d5f43a4931f03a657587ff5ed4cd302cc5c6834021be5c1fa2faae

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6d368ede8fbf6451e6d9699c34c3ba6788a63a06f03eef2486bc3210c6375407
MD5 947237aa0f21d5d5997173435d43291b
BLAKE2b-256 29d31b6ff981e8d33ba60e6bc9f1f06474f23f1878e64266cde933f42f8f58e0

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c089b11206a378325861966bee7f3f67ad9b1a68b58ee90e52ad8899918ae592
MD5 bf8df9258ae809dd561a5a7943e4f40c
BLAKE2b-256 a2690132af0b380c4e7314243aa5f0dc4605e868450d94ba0d8d728f069a3dac

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2c37665c4fc4864442313ea9056986b17a89ebb1d2526f2c44ee8d80d2fae1f1
MD5 be0f8098409367563e5a88f92fb951d8
BLAKE2b-256 9d58d71548b842be845e67248269fcec0fe7adc746ad925e085ec986e2f1653b

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 64e7835f998e169376f58b975f74c15bf9dea5fd1b6284d045080b7586fb023a
MD5 337f013aeb986c4e5c6c79b18743584b
BLAKE2b-256 442a17a191d7ee5197a5848bca75ba4946b2d7491ccef01508556006090a0756

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a0a187dd3d537d40bbe6d170f4e6f297033e88d4d057d6cfe9dab7b2a6efed7
MD5 42583867c7c2bdbec135678df5451d22
BLAKE2b-256 746969466460879e96566d24aa493c94fa71867e960b980b850aaa9bfd281554

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6a93e2bc081090c6d7599b2d69701bb1230fa1cb9cd4b4e5ea539da9612adc8d
MD5 97aebe7e7c18d1cf71d20d5f6aefd0c1
BLAKE2b-256 98f98a8182a4264aed34b47c2fcfe50a4b2bb6c867d7461cbaba17a38dc8a91e

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4cd9c5e8ac096cbd035031ead9d003fe39870356eb0b61dc214661cda73f7e9e
MD5 deb2d22c2c8db53f16888bd3f8b61955
BLAKE2b-256 f77a89b324a582d2a8d7a8d2dc7416de2cfee4163cd3291ac6ea46b5229e148b

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 25367472e93e07b6c8107d98852914c8261fcb0e8dbbf210a63789cde56bd8bb
MD5 ff0d751b8cd7a009f2fbfa13a73b230a
BLAKE2b-256 29593339b18a3abd2e351cd1c5890ab9f4b32446e6673f3adbfae9da552c83a1

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 401faff4841e14508c57b29bd30fdd9aa310cc972aed4a35937d54e4dec79e04
MD5 91937d3db78be9460b29829e39198205
BLAKE2b-256 07f32d30ffbc043d6f81df1280342d39d1df0847417d220b84e877d59d91d748

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3f14657302cc07c7cc159a921e59c631cea0f0b1ae68d56eee9a4d806e08cc86
MD5 a7d58faef224a1214bc4156a6c981d8c
BLAKE2b-256 cb95e0282ff045173ae20008762e318775cc7b90916fbcf2e8bc12875f83094d

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a51a8e22cbbf6aa35014e60cc72c8dd1133d5cfe1ef1c50d92e36a7ef22f30e
MD5 2af5b6dbe209e472faca1de45b830a44
BLAKE2b-256 bc9d478ecf714368b4e3130e493bfc9d3e0f502ea4357fa43da3c6d1369b2292

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d28456c562460a55081f992f43f533dc066e63d46a7b45ed3977837cb5a3bb28
MD5 e33e4212f4982added82efe96590b30e
BLAKE2b-256 ce9eb4bbb7d10ee5625ebaebebe46b83639f543207b2c54b2d76a8ae5cbfe55e

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93b7d30934e3e137284569323adbdd3bae6d92212beb90d922b1596053cde48d
MD5 b4bc6b2436d849d967fdb28aa510caa0
BLAKE2b-256 4e9852bf183d28ecdaba68ac8b028a27ee569499569ad4340ce041c4745d7560

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 53ea79778c583bf3e7f7a80a8a6ab38a202fb597dca3cc8c9a07a59812a73d15
MD5 848b3c8d959ddd98539adcc03ca72643
BLAKE2b-256 dc1782a5755897b9abf3dc08664bf052d552cf0ec72c180fb5de8d1342b7aed3

See more details on using hashes here.

File details

Details for the file blosc2-0.6.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bed770e489ed5ed9258387f82f03181691f428ea0c9a85ffe1299a6996408eeb
MD5 daf48db245ce9c75bb7acede6935c4e2
BLAKE2b-256 2b815300b48a6ae76826361d846da360dd904bf7d80518f5e3c69f3ae8f5f342

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page