Skip to main content

Python wrapper for the C-Blosc2 library.

Project description

A Python wrapper for the extremely fast Blosc2 compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc2

PyPi:

version

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (https://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor. Currently python-blosc2 already reproduces the API of python-blosc, so the former can be used as a drop-in replacement for the later. However, there are a few exceptions for the complete compatibility that are listed here: https://github.com/Blosc/python-blosc2/blob/main/RELEASE_NOTES.md#changes-from-python-blosc-to-python-blosc2

In addition, python-blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, serialization and all the features introduced in C-Blosc2. This is work in process and will be done incrementally in future releases.

Note: python-blosc2 is meant to be backward compatible with python-blosc data. That means that it can read data generated with python-blosc, but the opposite is not true (i.e. there is no forward compatibility).

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://blosc.org/python-blosc2/python-blosc2.html

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building

python-blosc2 comes with the Blosc sources with it and can be built with:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/pack_compress.py

Just to whet your appetite, here are some speed figures for an Intel box (i9-10940X CPU @ 3.30GHz, 14 cores) running Ubuntu 22.04. In particular, see how performance for pack_array2/unpack_array2 has improved vs the previous version (labeled as pack_array/unpack_array):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc2 version: 0.3.3.dev0
Blosc version: 2.4.2.dev ($Date:: 2022-09-16 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'zlib', 'zstd']
Compressor library versions:
  BLOSCLZ: 2.5.1
  LZ4: 1.9.4
  LZ4HC: 1.9.4
  ZLIB: 1.2.11.zlib-ng
  ZSTD: 1.5.2
Python version: 3.9.13 | packaged by conda-forge | (main, May 27 2022, 16:56:21)
[GCC 10.3.0]
Platform: Linux-5.15.0-41-generic-x86_64 (#44-Ubuntu SMP Wed Jun 22 14:20:53 UTC 2022)
Linux dist: Ubuntu 22.04 LTS
Processor: x86_64
Byte-ordering: little
Detected cores: 14.0
Number of threads to use by default: 8
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  Time for copying array with np.copy:                  0.394 s (3.79 GB/s))


*** the arange linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.051/0.101 s (29.08/14.80 GB/s))   cr: 444.3x
  Time for pack_array/unpack_array:     0.600/0.764 s (2.49/1.95 GB/s))     cr: 442.3x
  Time for pack_array2/unpack_array2:   0.059/0.158 s (25.28/9.44 GB/s))    cr: 444.2x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.059/0.116 s (25.07/12.82 GB/s))   cr: 279.2x
  Time for pack_array/unpack_array:     0.615/0.758 s (2.42/1.97 GB/s))     cr: 277.9x
  Time for pack_array2/unpack_array2:   0.058/0.160 s (25.52/9.31 GB/s))    cr: 279.2x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.193/0.085 s (7.71/17.45 GB/s))    cr: 155.9x
  Time for pack_array/unpack_array:     0.786/0.754 s (1.89/1.98 GB/s))     cr: 155.4x
  Time for pack_array2/unpack_array2:   0.218/0.165 s (6.84/9.02 GB/s))     cr: 155.9x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.250/0.141 s (5.96/10.55 GB/s))    cr: 273.8x
  Time for pack_array/unpack_array:     0.799/0.845 s (1.87/1.76 GB/s))     cr: 273.2x
  Time for pack_array2/unpack_array2:   0.261/0.243 s (5.71/6.13 GB/s))     cr: 273.8x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.189/0.079 s (7.89/18.92 GB/s))    cr: 644.9x
  Time for pack_array/unpack_array:     0.725/0.770 s (2.06/1.94 GB/s))     cr: 630.9x
  Time for pack_array2/unpack_array2:   0.206/0.143 s (7.25/10.39 GB/s))    cr: 644.8x

*** the linspace linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.091/0.113 s (16.34/13.21 GB/s))   cr:  50.1x
  Time for pack_array/unpack_array:     0.623/0.751 s (2.39/1.98 GB/s))     cr:  50.0x
  Time for pack_array2/unpack_array2:   0.124/0.163 s (11.98/9.12 GB/s))    cr:  50.1x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.077/0.114 s (19.33/13.12 GB/s))   cr:  55.7x
  Time for pack_array/unpack_array:     0.624/0.740 s (2.39/2.01 GB/s))     cr:  55.8x
  Time for pack_array2/unpack_array2:   0.098/0.190 s (15.19/7.83 GB/s))    cr:  55.7x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.352/0.075 s (4.23/19.98 GB/s))    cr:  53.6x
  Time for pack_array/unpack_array:     0.918/0.781 s (1.62/1.91 GB/s))     cr:  53.6x
  Time for pack_array2/unpack_array2:   0.389/0.139 s (3.83/10.72 GB/s))    cr:  53.6x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.395/0.148 s (3.77/10.08 GB/s))    cr:  50.4x
  Time for pack_array/unpack_array:     0.940/0.824 s (1.59/1.81 GB/s))     cr:  50.4x
  Time for pack_array2/unpack_array2:   0.433/0.252 s (3.44/5.92 GB/s))     cr:  50.4x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.402/0.098 s (3.71/15.22 GB/s))    cr:  74.7x
  Time for pack_array/unpack_array:     0.949/0.782 s (1.57/1.91 GB/s))     cr:  74.7x
  Time for pack_array2/unpack_array2:   0.426/0.175 s (3.50/8.49 GB/s))     cr:  74.7x

*** the random distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.240/0.119 s (6.22/12.48 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.578/0.162 s (2.58/9.20 GB/s))     cr:   4.0x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.250/0.114 s (5.97/13.11 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.590/0.161 s (2.53/9.24 GB/s))     cr:   4.0x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         1.102/0.088 s (1.35/17.01 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     1.690/0.758 s (0.88/1.97 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   1.445/0.178 s (1.03/8.38 GB/s))     cr:   4.0x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         1.258/0.210 s (1.18/7.11 GB/s))     cr:   4.7x
  Time for pack_array/unpack_array:     1.822/0.898 s (0.82/1.66 GB/s))     cr:   4.7x
  Time for pack_array2/unpack_array2:   1.549/0.355 s (0.96/4.20 GB/s))     cr:   4.7x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         1.653/0.098 s (0.90/15.21 GB/s))    cr:   4.4x
  Time for pack_array/unpack_array:     2.206/0.796 s (0.68/1.87 GB/s))     cr:   4.4x
  Time for pack_array2/unpack_array2:   2.077/0.179 s (0.72/8.30 GB/s))     cr:   4.4x

As can be seen, is perfectly possible for python-blosc2 to go faster than a plain memcpy(). But more interestingly, you can easily choose the codecs and filters that better adapt to your datasets, and persist and transmit them faster and using less memory.

Start using compression in your data workflows and feel the experience of doing more with less.

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

https://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-0.6.5.tar.gz (2.5 MB view details)

Uploaded Source

Built Distributions

blosc2-0.6.5-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc2-0.6.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc2-0.6.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

blosc2-0.6.5-cp311-cp311-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc2-0.6.5-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-0.6.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-0.6.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

blosc2-0.6.5-cp310-cp310-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-0.6.5-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-0.6.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-0.6.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc2-0.6.5-cp39-cp39-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc2-0.6.5-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc2-0.6.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

blosc2-0.6.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

blosc2-0.6.5-cp38-cp38-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file blosc2-0.6.5.tar.gz.

File metadata

  • Download URL: blosc2-0.6.5.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.5.tar.gz
Algorithm Hash digest
SHA256 96f384c8cff6264212d94d95167f2e9883b4313619646da957e36822cbfe82dd
MD5 1dc4ae61df1bdb4e4585dbdceaf60a8a
BLAKE2b-256 e31cdf92c4b65935d3277f5316ca1b401cfbffa7e96311b73aa4100782c69f79

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5eadbbe08f83543919ccc8ea1b9c7b5ed0cff94afcc7c092b5e4bef4e9360e44
MD5 db2aafb3f1371f405260f803fa32d13c
BLAKE2b-256 75f0e561498b5568b6b8d8cd7d797d353f134e38a0726825dc01062f45b9c0e0

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a41fef2c1755c4b6ee8de4a287ee5ea8efade5ead70e07ff24ab56c21c56fbc
MD5 20817055610a37abcbe06cd5405c399a
BLAKE2b-256 08c6dff769456a5f61db6f3eb21725f48f79902c1582fe8fa5c2069416ad0b59

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9276a14028c138f58b4b9da52271eaacec116942aad01386ec6987bd24464268
MD5 bb7fd39b032c153e40f788bab08f1474
BLAKE2b-256 6ed7c5a82ffd7f83d03cd46aeca087630513248644c6e0fbef11c998847d9565

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5630b5e2c92e5599b8fce8ae55027d6919bba61b9510ae922b5686c7347a6e7d
MD5 8a2214557a8a09c921b22d7a0a4ece09
BLAKE2b-256 e07b5c1150de2faec952fb39713d664ea1ba9b52ec173554526926f544833efd

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1925943e9523e32d3ed2d36da7760cceb3e26fccf5995a8ddfc1e346fae6d06c
MD5 bae758de605a2366f5dec334b33502a6
BLAKE2b-256 a55e5b9d0ded37701a0e324d7b9b96214a5e268e34804f879356af8f0a84de0e

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86a2b6b4190398bb9c7b3dfe4525c9dc4a423fd1f9b973b91a720b5f63670a2b
MD5 b8d56102189463984e2d5caea480bfdb
BLAKE2b-256 a17e052b47439badb2f4ba9a33d7398987749823ac929f012a2d591940aec2c3

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7953f1ee0dd076cb1aa02a644c7f70894cf2b680a4ab4f4a141b806c1ac1881b
MD5 719065235f19c133f908f0c0cc2b6537
BLAKE2b-256 e7772d8d5a1c9a9ec30937ff9c7836a73f1924cc76c674710ed00dcf53252d01

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cdfaf4fa34410724b47a0f9a6d7f1db94b605518220366cb49c3d83227e19b77
MD5 03fcdb636b6ba6848449a13598047c2b
BLAKE2b-256 17f073cb2b66938c3e39faf0e55d6023b343ca80166d6eedd745c036118796d0

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 35ec2980d11ae81ee01680e8c39b4b9a1645687e2a8adb86bb05490a5ec32413
MD5 45c59f5b81860cf457ce50389b2767c1
BLAKE2b-256 ac15c2cd90fcf95bb84b9e1fc25312a57b4331c36fa86fa4884652946aba5f6d

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65ce15b3a68391ca812497afe18ee31740540fa92339428cf01e9c6cf8802b7c
MD5 b5ec4b6d68cac4fee198b41933e89424
BLAKE2b-256 da22d7da6cef0b83e340e2884ff8d50b7eabfda53a3bea1908bc31eb51b2968c

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a33288826ac81136d28c8b9ed535a52a97984544e3499a1cb0aec4c7d53711e6
MD5 79ac19cf0cac7e60eea54a95778109c0
BLAKE2b-256 5e2e7dcd1bd16927682a60ee019780daa7b131560f59ece6a1cc1215e29d07cc

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4b39767f4c61e8680dff5860191531298eeafe9f8de8bce971a1f1d74eef462b
MD5 e0c9a2f057a6832cb3360c1584240898
BLAKE2b-256 6365606b8729be196e11000fca0afb0c2cc2dc18b1da448a22debb0859f1cb24

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d02648930f526eac68ca4675e5b85653229fdadcff67f6a7c295dada99964f2f
MD5 6ee8405192c4d1a76a3ac68b579ffbd3
BLAKE2b-256 73227a9451304a6008ef4509642d4ffadbb431532c8fe29b14f44b05bec5484a

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 189ebbef6adf772d5bd27f22b72d2b0af66c2dd8ea77b1c77860e33c7f0b5ccb
MD5 6cc4f81a58d8b630bfcdb033804fefb9
BLAKE2b-256 fbf31f5fdbbc8387c44cc8e25db139bda3f906393b1f50aba73ad7080013cf07

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 184363ed91b72ee9a5fe99916c13eefd0a8e89bfc87a94cece27c9dd1c6a28b7
MD5 af4ac34d4460c4d52b00c0e85822f70e
BLAKE2b-256 ab797c8de193bdb39e8897c7c31e57304237325d577cab3f7bdcb5d52ae6ff4d

See more details on using hashes here.

File details

Details for the file blosc2-0.6.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa89032a0ca2027e59ba8bf330f6d6d0dff01e111834be56e10dc7efb5699340
MD5 8294efa64593770a5745b48304becc07
BLAKE2b-256 e8b1382f35e3f0d7cb25a9abb9ce7b571d32d0d7b6784b673b7501082936b590

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page