Skip to main content

Python wrapper for the C-Blosc2 library.

Project description

A Python wrapper for the extremely fast Blosc2 compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc2

PyPi:

version

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (https://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor. Currently python-blosc2 already reproduces the API of python-blosc, so the former can be used as a drop-in replacement for the later. However, there are a few exceptions for the complete compatibility that are listed here: https://github.com/Blosc/python-blosc2/blob/main/RELEASE_NOTES.md#changes-from-python-blosc-to-python-blosc2

In addition, python-blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, serialization and all the features introduced in C-Blosc2. This is work in process and will be done incrementally in future releases.

Note: python-blosc2 is meant to be backward compatible with python-blosc data. That means that it can read data generated with python-blosc, but the opposite is not true (i.e. there is no forward compatibility).

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://blosc.org/python-blosc2/python-blosc2.html

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building

python-blosc2 comes with the Blosc sources with it and can be built with:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/pack_compress.py

Just to whet your appetite, here are some speed figures for an Intel box (i9-10940X CPU @ 3.30GHz, 14 cores) running Ubuntu 22.04. In particular, see how performance for pack_array2/unpack_array2 has improved vs the previous version (labeled as pack_array/unpack_array):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc2 version: 0.3.3.dev0
Blosc version: 2.4.2.dev ($Date:: 2022-09-16 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'zlib', 'zstd']
Compressor library versions:
  BLOSCLZ: 2.5.1
  LZ4: 1.9.4
  LZ4HC: 1.9.4
  ZLIB: 1.2.11.zlib-ng
  ZSTD: 1.5.2
Python version: 3.9.13 | packaged by conda-forge | (main, May 27 2022, 16:56:21)
[GCC 10.3.0]
Platform: Linux-5.15.0-41-generic-x86_64 (#44-Ubuntu SMP Wed Jun 22 14:20:53 UTC 2022)
Linux dist: Ubuntu 22.04 LTS
Processor: x86_64
Byte-ordering: little
Detected cores: 14.0
Number of threads to use by default: 8
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  Time for copying array with np.copy:                  0.394 s (3.79 GB/s))


*** the arange linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.051/0.101 s (29.08/14.80 GB/s))   cr: 444.3x
  Time for pack_array/unpack_array:     0.600/0.764 s (2.49/1.95 GB/s))     cr: 442.3x
  Time for pack_array2/unpack_array2:   0.059/0.158 s (25.28/9.44 GB/s))    cr: 444.2x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.059/0.116 s (25.07/12.82 GB/s))   cr: 279.2x
  Time for pack_array/unpack_array:     0.615/0.758 s (2.42/1.97 GB/s))     cr: 277.9x
  Time for pack_array2/unpack_array2:   0.058/0.160 s (25.52/9.31 GB/s))    cr: 279.2x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.193/0.085 s (7.71/17.45 GB/s))    cr: 155.9x
  Time for pack_array/unpack_array:     0.786/0.754 s (1.89/1.98 GB/s))     cr: 155.4x
  Time for pack_array2/unpack_array2:   0.218/0.165 s (6.84/9.02 GB/s))     cr: 155.9x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.250/0.141 s (5.96/10.55 GB/s))    cr: 273.8x
  Time for pack_array/unpack_array:     0.799/0.845 s (1.87/1.76 GB/s))     cr: 273.2x
  Time for pack_array2/unpack_array2:   0.261/0.243 s (5.71/6.13 GB/s))     cr: 273.8x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.189/0.079 s (7.89/18.92 GB/s))    cr: 644.9x
  Time for pack_array/unpack_array:     0.725/0.770 s (2.06/1.94 GB/s))     cr: 630.9x
  Time for pack_array2/unpack_array2:   0.206/0.143 s (7.25/10.39 GB/s))    cr: 644.8x

*** the linspace linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.091/0.113 s (16.34/13.21 GB/s))   cr:  50.1x
  Time for pack_array/unpack_array:     0.623/0.751 s (2.39/1.98 GB/s))     cr:  50.0x
  Time for pack_array2/unpack_array2:   0.124/0.163 s (11.98/9.12 GB/s))    cr:  50.1x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.077/0.114 s (19.33/13.12 GB/s))   cr:  55.7x
  Time for pack_array/unpack_array:     0.624/0.740 s (2.39/2.01 GB/s))     cr:  55.8x
  Time for pack_array2/unpack_array2:   0.098/0.190 s (15.19/7.83 GB/s))    cr:  55.7x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.352/0.075 s (4.23/19.98 GB/s))    cr:  53.6x
  Time for pack_array/unpack_array:     0.918/0.781 s (1.62/1.91 GB/s))     cr:  53.6x
  Time for pack_array2/unpack_array2:   0.389/0.139 s (3.83/10.72 GB/s))    cr:  53.6x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.395/0.148 s (3.77/10.08 GB/s))    cr:  50.4x
  Time for pack_array/unpack_array:     0.940/0.824 s (1.59/1.81 GB/s))     cr:  50.4x
  Time for pack_array2/unpack_array2:   0.433/0.252 s (3.44/5.92 GB/s))     cr:  50.4x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.402/0.098 s (3.71/15.22 GB/s))    cr:  74.7x
  Time for pack_array/unpack_array:     0.949/0.782 s (1.57/1.91 GB/s))     cr:  74.7x
  Time for pack_array2/unpack_array2:   0.426/0.175 s (3.50/8.49 GB/s))     cr:  74.7x

*** the random distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.240/0.119 s (6.22/12.48 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.578/0.162 s (2.58/9.20 GB/s))     cr:   4.0x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.250/0.114 s (5.97/13.11 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.590/0.161 s (2.53/9.24 GB/s))     cr:   4.0x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         1.102/0.088 s (1.35/17.01 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     1.690/0.758 s (0.88/1.97 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   1.445/0.178 s (1.03/8.38 GB/s))     cr:   4.0x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         1.258/0.210 s (1.18/7.11 GB/s))     cr:   4.7x
  Time for pack_array/unpack_array:     1.822/0.898 s (0.82/1.66 GB/s))     cr:   4.7x
  Time for pack_array2/unpack_array2:   1.549/0.355 s (0.96/4.20 GB/s))     cr:   4.7x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         1.653/0.098 s (0.90/15.21 GB/s))    cr:   4.4x
  Time for pack_array/unpack_array:     2.206/0.796 s (0.68/1.87 GB/s))     cr:   4.4x
  Time for pack_array2/unpack_array2:   2.077/0.179 s (0.72/8.30 GB/s))     cr:   4.4x

As can be seen, is perfectly possible for python-blosc2 to go faster than a plain memcpy(). But more interestingly, you can easily choose the codecs and filters that better adapt to your datasets, and persist and transmit them faster and using less memory.

Start using compression in your data workflows and feel the experience of doing more with less.

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

https://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-0.6.6.tar.gz (2.5 MB view details)

Uploaded Source

Built Distributions

blosc2-0.6.6-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc2-0.6.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc2-0.6.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

blosc2-0.6.6-cp311-cp311-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

blosc2-0.6.6-cp311-cp311-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc2-0.6.6-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-0.6.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-0.6.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

blosc2-0.6.6-cp310-cp310-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

blosc2-0.6.6-cp310-cp310-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-0.6.6-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-0.6.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-0.6.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc2-0.6.6-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

blosc2-0.6.6-cp39-cp39-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc2-0.6.6-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc2-0.6.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

blosc2-0.6.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

blosc2-0.6.6-cp38-cp38-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

blosc2-0.6.6-cp38-cp38-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file blosc2-0.6.6.tar.gz.

File metadata

  • Download URL: blosc2-0.6.6.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.6.tar.gz
Algorithm Hash digest
SHA256 444ab75212c92f0dc51eba46f35aecefb39f258693edc2654f2bb391d01c6660
MD5 ac5414e5c6c59e0ccc1b114d2327534d
BLAKE2b-256 3f16a41d8e5367a8cda1a74d5c5a769abbdc45c40ceeb7dce007551cc3651237

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.6-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f3ebdb0e0fea9178b056feee0f1de82082a391bb210d8e652db875c51a60d499
MD5 3bd8479b1709cc68d6da234854cbdcd6
BLAKE2b-256 e200da9a0f31c55459a97e3aacce83597d19f12b7137bfbff07e18c8683b7b29

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08df9d10a77387a841094cc7620387bc3eb424671b00db9e03fd035f5d819ab9
MD5 b07176f7f2e9fe1e5413b7e7d87420f3
BLAKE2b-256 49edda4239f40facafe35268b0995757c8a24ed063ef644d226aee495e0af956

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4d0882b3dc398087d55e05e93a48858bc38c270e4bc6688a1b37378372d500d2
MD5 6610d378935057626b7209879d219948
BLAKE2b-256 41d8317a737aa8c60092e781c337075ec319b75f6da9f2a96356a004db326095

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 704991b0e14ff5f0cf6575a337c769ddcebb4ef3e789affe500c88d12ffe8933
MD5 ba9b5c1cb46619df4a3ed2212a225411
BLAKE2b-256 ee0345afd5361c61897591f3591423535d760bc2dda3926fec70f213a5fa31e9

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b8c12efe298aae095f1d8df4c0965e1c6bb329d30983f5377554d52b074f6c69
MD5 1d0ba3a11f11f397b16794976ac61494
BLAKE2b-256 f736309c928f24a72b2f82b52bb00942c8460a9b620f3761134040ccba077aed

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 05bb5c5e0c28bba18ea9aa420422b206773ce47e44ed4295111a22493b61206b
MD5 7aa53cc30739b1a9284ca15f0d2c5e24
BLAKE2b-256 ee43fe8c30cc083b5d5ecdde71fb99a19402a5bc75d8b3aacc4e150a5866183a

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9977affa0c260e291c9043a7a0e373e3d13c1aa4eafefb14e61b8d195efd8be0
MD5 73b7b4081684824e1d9f10636cd16d5f
BLAKE2b-256 e78bd5699e32117b652dad89af6598cd49ac97105933a0a798e4b82df47d112b

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9182c1a85beae31971cfa30fbb3e0029074e812d14838722b184243ae0f0a9c1
MD5 88f261b4dd20e31ea7a26125bd2620dd
BLAKE2b-256 e3dc51a6a7ddc2440b91738f00b357a66d0218d8893eb689dd7dcfc5f6420c78

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4de0d277604340b5081d36395788baf1df6de3a6b076e3aee4163c3aa992141d
MD5 f360ca134f4d9948d7229c4876c446cb
BLAKE2b-256 72dd777a1833dc57f5e8f2574b902225cd0e257caaf8d99f0023fa8a2c012bc8

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2812cb30d55f988e79bdff383590d0f87d74513c7a6016b870e34bc0f3715813
MD5 ee3e1fc7146ae782d569ca5767b93967
BLAKE2b-256 1bb9f3f189702961ac135bed6e31f4cf55781fda5d371832b84ea5c004b9bad2

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cef23ac45c171ff42b97f634e87631fff079f13fe34296260f25f6ba75821170
MD5 4b311555408bd34bfd8ff8e13d7e5296
BLAKE2b-256 c9f3d35603294e0c69b17af404b6e01a53106e3fe674a74dfed9a3c62a75d765

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 03c5860c895dfbcd0df5f5327bb7abd6f7ce04c99741c2c25528d499733245bc
MD5 d1ae876bf96f72a9a2c31babca05a841
BLAKE2b-256 2e771146de44952fa70e5dd6c37b3baab39eb8734b600a57e290a18197cb329e

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8e81b6929d77415c728b5679edb78882b2fc63dbdccfe7eac1a57460edac58e6
MD5 de5c8e9c54f123bbd2cff57f2b6f7651
BLAKE2b-256 c179095bae8191594b4dcfcf4c51acdbe09ec23bf938034b1938c3748854c6cc

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 44494c248178cb4a6d32050398fd9e737fc5d49d0403625d04611dcbcab0749e
MD5 61ca9ce92239dc33a6f0818352c91dad
BLAKE2b-256 e5e0fadd0ad98d7bdd917800fee9d93f09454c9cc0924f45f2878461f6f1704b

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7099bb98ca31f84d01f639a0f47ca9f9e483693813c936a4ea898317be4aaed5
MD5 2b87c9c76c42660cdce158bfa2db9e7b
BLAKE2b-256 b3699c5f5329a3e65d664f29ec0a8e8a0c8a47e1bb56a579fb73b5f06e4ccc11

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc2-0.6.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-0.6.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 114cfe06215c7d8d77c82cf080fff7090e41d60e95177019baff68abc6a2ab90
MD5 af528e9c0ad4d10d6e55fec15664b169
BLAKE2b-256 180dea534e90476760fe60a7165affd4e2c9ce7748a030a281135acc21029a30

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 138207d501c68df3404c765daffdf74847cf6b2a9702efbce5f79c7babda6aab
MD5 bd649be5afee52b2abe41f0dc3af3b6e
BLAKE2b-256 6a04ddd955fc6cebd9a26f8989b5b03db35b834672449c42b28db1686b3f66df

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 42ef704fdeb9c1a17e7d5fa932169a6d773dd91df8fe143c8eb374315ac75ade
MD5 286424d42f04fcecc0d6825dca51c755
BLAKE2b-256 79bba0c15e2556e0a733a98cb2f1ae41dd42c38bc33ff5092bdf93ae2d07daf1

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3f6dddda11b255270d7b4f550dbb8bc9fd305a324189ac4a97b4735745af4435
MD5 8995324b37aa47de5fa3d36ea4a8f8fe
BLAKE2b-256 28e18326fe44f3573aae3597823c17027561b2a334549c9e2d61a8567de886f6

See more details on using hashes here.

File details

Details for the file blosc2-0.6.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-0.6.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 80c227af34fad5334e712cd23385af1c898be11ae3d69c25cfc9de024c0ac6de
MD5 928ad0166087ff59c863465461da7c1b
BLAKE2b-256 58aa4c1218ff7110abf9566948a4a5f132c495df42b643bcab33ea9eb6658f58

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page