Skip to main content

Python wrapper for the C-Blosc2 library.

Project description

A Python wrapper for the extremely fast Blosc2 compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc2

PyPi:

version

Gitter:

gitter

Code of Conduct:

Contributor Covenant

What it is

Blosc (https://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.

Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.

python-blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor. Currently python-blosc2 already reproduces the API of python-blosc, so the former can be used as a drop-in replacement for the later. However, there are a few exceptions for the complete compatibility that are listed here: https://github.com/Blosc/python-blosc2/blob/main/RELEASE_NOTES.md#changes-from-python-blosc-to-python-blosc2

In addition, python-blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, serialization and all the features introduced in C-Blosc2. This is work in process and will be done incrementally in future releases.

Note: python-blosc2 is meant to be backward compatible with python-blosc data. That means that it can read data generated with python-blosc, but the opposite is not true (i.e. there is no forward compatibility).

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://blosc.org/python-blosc2/python-blosc2.html

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building

python-blosc2 comes with the Blosc sources with it and can be built with:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the doctests in blosc/test.py:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/pack_compress.py

Just to whet your appetite, here are some speed figures for an Intel box (i9-10940X CPU @ 3.30GHz, 14 cores) running Ubuntu 22.04. In particular, see how performance for pack_array2/unpack_array2 has improved vs the previous version (labeled as pack_array/unpack_array):

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc2 version: 0.3.3.dev0
Blosc version: 2.4.2.dev ($Date:: 2022-09-16 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'zlib', 'zstd']
Compressor library versions:
  BLOSCLZ: 2.5.1
  LZ4: 1.9.4
  LZ4HC: 1.9.4
  ZLIB: 1.2.11.zlib-ng
  ZSTD: 1.5.2
Python version: 3.9.13 | packaged by conda-forge | (main, May 27 2022, 16:56:21)
[GCC 10.3.0]
Platform: Linux-5.15.0-41-generic-x86_64 (#44-Ubuntu SMP Wed Jun 22 14:20:53 UTC 2022)
Linux dist: Ubuntu 22.04 LTS
Processor: x86_64
Byte-ordering: little
Detected cores: 14.0
Number of threads to use by default: 8
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Creating NumPy arrays with 10**8 int64/float64 elements:
  Time for copying array with np.copy:                  0.394 s (3.79 GB/s))


*** the arange linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.051/0.101 s (29.08/14.80 GB/s))   cr: 444.3x
  Time for pack_array/unpack_array:     0.600/0.764 s (2.49/1.95 GB/s))     cr: 442.3x
  Time for pack_array2/unpack_array2:   0.059/0.158 s (25.28/9.44 GB/s))    cr: 444.2x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.059/0.116 s (25.07/12.82 GB/s))   cr: 279.2x
  Time for pack_array/unpack_array:     0.615/0.758 s (2.42/1.97 GB/s))     cr: 277.9x
  Time for pack_array2/unpack_array2:   0.058/0.160 s (25.52/9.31 GB/s))    cr: 279.2x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.193/0.085 s (7.71/17.45 GB/s))    cr: 155.9x
  Time for pack_array/unpack_array:     0.786/0.754 s (1.89/1.98 GB/s))     cr: 155.4x
  Time for pack_array2/unpack_array2:   0.218/0.165 s (6.84/9.02 GB/s))     cr: 155.9x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.250/0.141 s (5.96/10.55 GB/s))    cr: 273.8x
  Time for pack_array/unpack_array:     0.799/0.845 s (1.87/1.76 GB/s))     cr: 273.2x
  Time for pack_array2/unpack_array2:   0.261/0.243 s (5.71/6.13 GB/s))     cr: 273.8x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.189/0.079 s (7.89/18.92 GB/s))    cr: 644.9x
  Time for pack_array/unpack_array:     0.725/0.770 s (2.06/1.94 GB/s))     cr: 630.9x
  Time for pack_array2/unpack_array2:   0.206/0.143 s (7.25/10.39 GB/s))    cr: 644.8x

*** the linspace linear distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.091/0.113 s (16.34/13.21 GB/s))   cr:  50.1x
  Time for pack_array/unpack_array:     0.623/0.751 s (2.39/1.98 GB/s))     cr:  50.0x
  Time for pack_array2/unpack_array2:   0.124/0.163 s (11.98/9.12 GB/s))    cr:  50.1x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.077/0.114 s (19.33/13.12 GB/s))   cr:  55.7x
  Time for pack_array/unpack_array:     0.624/0.740 s (2.39/2.01 GB/s))     cr:  55.8x
  Time for pack_array2/unpack_array2:   0.098/0.190 s (15.19/7.83 GB/s))    cr:  55.7x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         0.352/0.075 s (4.23/19.98 GB/s))    cr:  53.6x
  Time for pack_array/unpack_array:     0.918/0.781 s (1.62/1.91 GB/s))     cr:  53.6x
  Time for pack_array2/unpack_array2:   0.389/0.139 s (3.83/10.72 GB/s))    cr:  53.6x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         0.395/0.148 s (3.77/10.08 GB/s))    cr:  50.4x
  Time for pack_array/unpack_array:     0.940/0.824 s (1.59/1.81 GB/s))     cr:  50.4x
  Time for pack_array2/unpack_array2:   0.433/0.252 s (3.44/5.92 GB/s))     cr:  50.4x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         0.402/0.098 s (3.71/15.22 GB/s))    cr:  74.7x
  Time for pack_array/unpack_array:     0.949/0.782 s (1.57/1.91 GB/s))     cr:  74.7x
  Time for pack_array2/unpack_array2:   0.426/0.175 s (3.50/8.49 GB/s))     cr:  74.7x

*** the random distribution ***
Using *** Codec.BLOSCLZ *** compressor:
  Time for compress/decompress:         0.240/0.119 s (6.22/12.48 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.578/0.162 s (2.58/9.20 GB/s))     cr:   4.0x
Using *** Codec.LZ4 *** compressor:
  Time for compress/decompress:         0.250/0.114 s (5.97/13.11 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     0.794/0.767 s (1.88/1.94 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   0.590/0.161 s (2.53/9.24 GB/s))     cr:   4.0x
Using *** Codec.LZ4HC *** compressor:
  Time for compress/decompress:         1.102/0.088 s (1.35/17.01 GB/s))    cr:   4.0x
  Time for pack_array/unpack_array:     1.690/0.758 s (0.88/1.97 GB/s))     cr:   4.0x
  Time for pack_array2/unpack_array2:   1.445/0.178 s (1.03/8.38 GB/s))     cr:   4.0x
Using *** Codec.ZLIB *** compressor:
  Time for compress/decompress:         1.258/0.210 s (1.18/7.11 GB/s))     cr:   4.7x
  Time for pack_array/unpack_array:     1.822/0.898 s (0.82/1.66 GB/s))     cr:   4.7x
  Time for pack_array2/unpack_array2:   1.549/0.355 s (0.96/4.20 GB/s))     cr:   4.7x
Using *** Codec.ZSTD *** compressor:
  Time for compress/decompress:         1.653/0.098 s (0.90/15.21 GB/s))    cr:   4.4x
  Time for pack_array/unpack_array:     2.206/0.796 s (0.68/1.87 GB/s))     cr:   4.4x
  Time for pack_array2/unpack_array2:   2.077/0.179 s (0.72/8.30 GB/s))     cr:   4.4x

As can be seen, is perfectly possible for python-blosc2 to go faster than a plain memcpy(). But more interestingly, you can easily choose the codecs and filters that better adapt to your datasets, and persist and transmit them faster and using less memory.

Start using compression in your data workflows and feel the experience of doing more with less.

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

https://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.


Enjoy data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-2.0.0.tar.gz (3.0 MB view details)

Uploaded Source

Built Distributions

blosc2-2.0.0-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc2-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc2-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

blosc2-2.0.0-cp311-cp311-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

blosc2-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc2-2.0.0-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

blosc2-2.0.0-cp310-cp310-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

blosc2-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-2.0.0-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc2-2.0.0-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

blosc2-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

blosc2-2.0.0-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

blosc2-2.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

blosc2-2.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

blosc2-2.0.0-cp38-cp38-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

blosc2-2.0.0-cp38-cp38-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file blosc2-2.0.0.tar.gz.

File metadata

  • Download URL: blosc2-2.0.0.tar.gz
  • Upload date:
  • Size: 3.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-2.0.0.tar.gz
Algorithm Hash digest
SHA256 f19b0b3674f6c825b490f00d8264b0c540c2cdc11ec7e81178d38b83c57790a1
MD5 2d8108ebd6c69263732aa47d7036ee2c
BLAKE2b-256 6ebb339a2ea90db9c2c78ac6de8b4627f9d1ff1551fc260de2d54999f91a6538

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.0.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-2.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 54c5614b18f9f01473758fa64e3bc699adbe31b307a45eca0e07fa2204e4d4a1
MD5 e639e5d0c2b4e38bd218349b3de509ef
BLAKE2b-256 03d0685258d475e09d8884d64c8a1eb90a3428fbba782e60b7926f9fdb82c297

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98ab1cd57f9d7422f1636a6b290f2940113ee8be26bfe3823e8c011826972b9c
MD5 accbf5e3b18d8b1da6b38f635e0de9c1
BLAKE2b-256 11efbb92803ec77ce71c0a2098ae21bb6c06ae4b0a6c5ba60bdc3b1caa86d08a

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0ec63269428aa3fb45f7d4881b2d11b428c4cb62e854caf54a767a64da4df83e
MD5 8721bf82c2f680813e9bc0d94babe918
BLAKE2b-256 0edaa71b2e8654c2716135d6d7550cee4763e4935b26ada9573015d859c4938b

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f206e6a01a8167b441bf886ff022eb20e0f085b09300f49f3018f566c14d918a
MD5 08c0b0eef5482415fbccb20f0d405dce
BLAKE2b-256 04b312c4cb2ad097f69d19386537ead67daec16e1310404aa6ae30ef40d86589

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c58990ab2bcd0f412496acf1d05c65d955d963197bbaa57b10b2ace31c29181a
MD5 e13611c662df4cebd12070781cb168c3
BLAKE2b-256 487f6aa359d8c126fb0625680adb5443840ccf3affdaf89ba971131a0ca6a60b

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.0.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-2.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 659e18d5e606a0ca4d80766f86d87e640818051911d01679eed11022243a7e4f
MD5 62587b593c66f192aeb0915024f82ab3
BLAKE2b-256 f82b6a3ae1da19d1f306c483eb474396b0f7df7069e835225e686ca1f66e541e

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96dd63eb7641594208e6a865fd60a0bdde24568a180180beb8af4d6608796f3a
MD5 46aa0b66f0191e9046e3a17ff020263b
BLAKE2b-256 d96e985492c9bb60ed88cd8ec5d0102a00d1cd3d9f5333ad545df97604d85baa

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1fbecd7ef4876811719aa58d84e4b414f430f329162c18578b870f5e77b59864
MD5 293f98637b09674e9c76e9007d25eb40
BLAKE2b-256 be4f41a30e3ee529e1b5bf28bba6a8e9c80f01c653eba93303f9807cf3e68e48

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cec4c0570543921ce6b8c9ffdbf9f2170de37ecaf8e2b213e867e3130b81f205
MD5 e0f65b7832f5af82dfa69c88427661fb
BLAKE2b-256 55d613a81a54f7bad133f6bd693c9c149b8752b1beae43cf9f96717588bad639

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4085e5c1df186e1747d8a8578b0cc1c8b7668391d635e9f89e17156912fba85a
MD5 37692b17c96baa4e252361b7c810f348
BLAKE2b-256 c31f0bdaee0a38695a253906223d52af0f1b6e848f1b50a52118880763f3f276

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-2.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ef018926b55799cf23345127dde8f29356b4451b3e067e1b07f0d186213bd821
MD5 711b423a0f65faff42f11e06c03d5c52
BLAKE2b-256 af5e63994350f62dc0e560fe340927df3d857cc4fa5eb17096c55dbac5c1c7ee

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea3396de7757092d502fb297a44a8d019d92e750e5aebcd9d39a157fde8785b3
MD5 e1dc2c843c061cc21320a6773c9497c7
BLAKE2b-256 8b094be67534e1fce97d071349cbe34f450672ac9523366389ee9f9a6f8a72f3

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5c193959a984e7814833c8be6b9026d7744d2cff4d450476561583a87152e13e
MD5 7f648da2ec5a53ca60de9ef882f18159
BLAKE2b-256 3f93de7c8ec60d938c175089de277cecefc5f5105242242ca1dae5e903e95c40

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6545d6d7e7365a2a3533d4bdf7095856443aed7d5ddc577ecd0e78083790bff1
MD5 ef1814c78c391966c2e523c199747148
BLAKE2b-256 f790ded637bbb6931afc7993799d6c21575b6376ac30abab35a5a15b667f7aac

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d98e850f0de55e15c402c6e27105ba850f8954e784e30a7f8bde89eb70a08574
MD5 af0302ec48c61f4beb436ef88b406253
BLAKE2b-256 0450d084fa4b79cebe7265b4730672e603967baa08966dda962fa65d1555253d

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for blosc2-2.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 32c365bf744353103ed91dc1f03889de03b986588181601594aa7ee773818cb4
MD5 d531af5d8c614df1ffe2f6aeb3db32c6
BLAKE2b-256 9f91a356e1870f258e337b9986b9a58c75e0cb960c1d89daafe01677d72b21d6

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8eb02f67d4ed8ac8f0ce5f3c8cafc0059255bb6899fd35127e4076925640f239
MD5 5b41b9f788ec42574cd714a575de604f
BLAKE2b-256 a6dd7e214303c2acb0807fd1ad86d78112456c0fc9397f565ab86ebd147f2a9b

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c5c52649837d514669107c77e8f172e9e5ecfa030eef0d378bb47ce1689921c9
MD5 4f3caeea8e8cbd5f5b4848ff1a35eedf
BLAKE2b-256 65a06f361113650bd64b828cfa8f564463833e2f0f1de290ec41e5107439f81d

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0497793f55db0b75de08eb4c047a0bc5b96dbe5e405b53803dd3368e36336188
MD5 ef1a91df43862bc88a6da32d8b5a08aa
BLAKE2b-256 2e8a0d75b934a03741b1225e0505076fdc7dc0059ba390ed6d4160d55cf968d5

See more details on using hashes here.

File details

Details for the file blosc2-2.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f465b8ab54ecde6b8654672a50a4c3699aafd8e2de0dfcd84ed53f8a34c1734a
MD5 9a38fa8ca0c15cf4548aff218b57cc28
BLAKE2b-256 76f6c6e3c20be426c599a418269e4372e2e158a530b43ca692075dce32f9786e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page