Skip to main content

Python wrapper for the C-Blosc2 library

Project description

A Python wrapper for the extremely fast Blosc2 compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc2

Actions:

actions

PyPi:

version

NumFOCUS:

numfocus

Code of Conduct:

Contributor Covenant

What it is

C-Blosc2 is the new major version of C-Blosc, and is backward compatible with both the C-Blosc1 API and its in-memory format. Python-Blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor.

Currently Python-Blosc2 already reproduces the API of Python-Blosc, so it can be used as a drop-in replacement. However, there are a few exceptions for a full compatibility.

In addition, Python-Blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, multi-dimensional arrays (NDArray), serialization and other bells and whistles introduced in C-Blosc2. Although this is always and endless process, we have already catch up with most of the C-Blosc2 API capabilities.

Note: Python-Blosc2 is meant to be backward compatible with Python-Blosc data. That means that it can read data generated with Python-Blosc, but the opposite is not true (i.e. there is no forward compatibility).

SChunk: a 64-bit compressed store

SChunk is the simple data container that handles setting, expanding and getting data and metadata. Contrarily to chunks, a super-chunk can update and resize the data that it contains, supports user metadata, and it does not have the 2 GB storage limitation.

Additionally, you can convert a SChunk into a contiguous, serialized buffer (aka cframe) and vice-versa; as a bonus, the serialization/deserialization process also works with NumPy arrays and PyTorch/TensorFlow tensors at a blazing speed:

Compression speed for different codecs

Decompression speed for different codecs

while reaching excellent compression ratios:

Compression ratio for different codecs

Also, if you are a Mac M1/M2 owner, make you a favor and use its native arm64 arch (yes, we are distributing Mac arm64 wheels too; you are welcome ;-):

Compression speed for different codecs on Apple M1

Decompression speed for different codecs on Apple M1

Read more about SChunk features in our blog entry at: https://www.blosc.org/posts/python-blosc2-improvements

NDArray: an N-Dimensional store

One of the latest and more exciting additions in Python-Blosc2 is the NDArray object. It can write and read n-dimensional datasets in an extremely efficient way thanks to a n-dim 2-level partitioning, allowing to slice and dice arbitrary large and compressed data in a more fine-grained way:

https://github.com/Blosc/python-blosc2/blob/main/images/b2nd-2level-parts.png?raw=true

To wet you appetite, here it is how the NDArray object performs on getting slices orthogonal to the different axis of a 4-dim dataset:

https://github.com/Blosc/python-blosc2/blob/main/images/Read-Partial-Slices-B2ND.png?raw=true

We have blogged about this: https://www.blosc.org/posts/blosc2-ndim-intro

We also have a ~2 min explanatory video on why slicing in a pineapple-style (aka double partition) is useful:

Slicing a dataset in pineapple-style

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://blosc.org/python-blosc2/python-blosc2.html

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building from sources

python-blosc2 comes with the C-Blosc2 sources with it and can be built in-place:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements-build.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the tests:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/pack_compress.py

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE.txt.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

https://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.

Citing Blosc

You can cite our work on the different libraries under the Blosc umbrella as:

@ONLINE{blosc,
  author = {{Blosc Development Team}},
  title = "{A fast, compressed and persistent data store library}",
  year = {2009-2023},
  note = {https://blosc.org}
}

Enjoy!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-2.2.8.tar.gz (4.7 MB view details)

Uploaded Source

Built Distributions

blosc2-2.2.8-cp312-cp312-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

blosc2-2.2.8-cp312-cp312-win32.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86

blosc2-2.2.8-cp312-cp312-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

blosc2-2.2.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

blosc2-2.2.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

blosc2-2.2.8-cp312-cp312-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

blosc2-2.2.8-cp312-cp312-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

blosc2-2.2.8-cp311-cp311-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc2-2.2.8-cp311-cp311-win32.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86

blosc2-2.2.8-cp311-cp311-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

blosc2-2.2.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc2-2.2.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

blosc2-2.2.8-cp311-cp311-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

blosc2-2.2.8-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc2-2.2.8-cp310-cp310-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-2.2.8-cp310-cp310-win32.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86

blosc2-2.2.8-cp310-cp310-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc2-2.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-2.2.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

blosc2-2.2.8-cp310-cp310-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

blosc2-2.2.8-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-2.2.8-cp39-cp39-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-2.2.8-cp39-cp39-win32.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86

blosc2-2.2.8-cp39-cp39-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc2-2.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-2.2.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc2-2.2.8-cp39-cp39-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

blosc2-2.2.8-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file blosc2-2.2.8.tar.gz.

File metadata

  • Download URL: blosc2-2.2.8.tar.gz
  • Upload date:
  • Size: 4.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for blosc2-2.2.8.tar.gz
Algorithm Hash digest
SHA256 59065aac5e9b01b0e9f3825d8e7f69f64b59bbfab148a47c54e4115f62a97474
MD5 fe1f4d4a1281566a7799d44b32d9403f
BLAKE2b-256 0a66ed9545df299067df5e87e49d6cdce6db594d7f32ee39f9deb4f0933c3422

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.2.8-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for blosc2-2.2.8-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1fcdfd65733c2b01b04ca137fff49633382f16af3b558c30a05caf88b43aa3a2
MD5 6ab67f8404941fe81ffb8251893b1665
BLAKE2b-256 1ef9e875197daa5978bdb3f8d47073bb110a20974509b8ff2c082c48deec2d1c

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp312-cp312-win32.whl.

File metadata

  • Download URL: blosc2-2.2.8-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for blosc2-2.2.8-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 7c85987729594a4b421e337f7c86c7d79bb58c3b5ed64f5bdabb201fc9b5aba2
MD5 29437e7f32a8d7a395ff81a7bb7f2683
BLAKE2b-256 0f6f38198a2a2faf88c9fd93ce34590f3ddaf62c672e53d49f14f121baf42d21

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ce4e6264ac419239e91df4fb73000307e4a6160793d943e24bbd3baf6803dec6
MD5 564eebee570212e9db4c4438470c80c5
BLAKE2b-256 d3b72dbda7cf973b2914d8dc8da5cab0c9df4c81e88530a1ea234e454278bc57

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 092c3e10dc15199ca41f95d9546ee35c93448a28a42a1977306b2afbacf9819a
MD5 e8aee4bf379d8d28a9f8440362cf95cf
BLAKE2b-256 5613593e5bd06ba3a2df0841e68c85f56df8046556fc264b0d2b299f46d117e1

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2d7e194615c0a54d69f51af3b0cc2ce3c5c09a1186325167e76ab9a0bc1441b8
MD5 b170f82aa3ccf23e0915f0aebc5ff957
BLAKE2b-256 895a0339ddd502d0424e24f07595ae7919a3d4082c669041d3b6d44aaa609283

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f6d7784b8528b605328dc3129a0f0a550cfa5c3394c6708f813cf719ca40663b
MD5 3385250be5e443890638606112f475b2
BLAKE2b-256 8a58625171519d4258b21692697580c6de2a2b0c484368cded20ace5e29499d6

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d60b622c39bafb6b2ea2cc21646f0ccfbecb87eafb95992aba8d2098c573620a
MD5 67bed499ec51c0d06c53b8df0625cb9b
BLAKE2b-256 ec4b63bf0ecadc8697b9c8e58fe81c300e8929278b54999d78112cfe5f30a6a2

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.2.8-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for blosc2-2.2.8-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 624a0e8c4e50b858845ebf18ae24ef793a7fd09b4f7955c033f92b70f8100831
MD5 41e1be0bc8e5ff08fb530b7ec81b8620
BLAKE2b-256 f09f4429256b9a6a7078906cf46483967ee7a69c70bd57d7feae5a2403a0e5db

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp311-cp311-win32.whl.

File metadata

  • Download URL: blosc2-2.2.8-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for blosc2-2.2.8-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 c770a710cc8bd4094960206ec4746cb8b12f642d7027093f0a346d822ee966cc
MD5 3f593269020636df882632f632cc9f80
BLAKE2b-256 ffbb60aeeb3cb07d055eeb0e439691dfb327da1e317e2b371f3226fac4424647

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b8511d755aaa43920b0303c8994541b61a0c00ab5e2565f54056571564b1c835
MD5 ebb945b100baee719dfb0f7d5384d500
BLAKE2b-256 3c0d39aa590440dba27974167eecf34d7604513e165684393eb4e12954e0175a

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e827795b54b2624e0768246b2661ca3e860c98dac6440dee46833184e4a1b4a9
MD5 72d1cf2fe6bf2561030b87df5ecfec7b
BLAKE2b-256 a222072c4f297b74ea47fead3648ac498688e2e501f9babaac22af1bff3bea5a

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4a3d60372a0aaf2409d9952cfb061a4d5a2afd07a06ed8332591d325d1703475
MD5 490df27bfb905e93bda41007cefd2fee
BLAKE2b-256 d4b514f7daec95cc75d6a7ab68c951187600545aa44827dd80ac7f6a4c490e98

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fe47cc9d570c8cbc1d475c95077b156afc7dd35b1fdce042323e23364d99bb6b
MD5 2619f9d5da89078e96d13abf8f2c7415
BLAKE2b-256 4b72528e72df815a59ee7b75c1fb4ab5efb710f9f144b017c093acf2d675171d

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0e0d9995e088555fb7f347e57b64c337971451c3b086e279cb56e7081321f2c4
MD5 8a75c7512bb5305fd5559d819a0becff
BLAKE2b-256 8187d491680097ec1a8d26dedfae896a6e5ee6048c00b7034c2f816a8376a5e0

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.2.8-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for blosc2-2.2.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b4423b8adea627cbe0b8da8a796436f8645ecc5c0e410d87c4fd2054ce051e14
MD5 9248e3e4bbaa7624b0d55db7c13cecc9
BLAKE2b-256 7e7fb22fbf2d3f6352ad1cece47a5d7d8bb680058b3b286ad0e16c35b3da7324

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp310-cp310-win32.whl.

File metadata

  • Download URL: blosc2-2.2.8-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for blosc2-2.2.8-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ae38c060e0206a5073be8c60f3256898f938f5e033bca53049e7065cdf4660ce
MD5 e615b17a3e264407854057e860e14373
BLAKE2b-256 16980099313a810ee60354f2cfb1fd8950fe027552dbd88347d757c54a1a85c1

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f2c0c0d6aa98d3a42de51cad22e17832d468d4ce2c30016c0e6aa8e36988459f
MD5 db92507f394b0325c38515e1be8d3b76
BLAKE2b-256 5be562dba36dd3129a33f574afa8bb0c30f76c1288e0d6a0e50d4086299ea266

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62b5dfe5507cd27abaee152c4c5d95c56736259a2b8dfdb74c0e96fd1ad03f1e
MD5 aeca8301916a532004a43cc236bf843f
BLAKE2b-256 2753dbe9a51225c98a8c91c590daae553f978ed49f661df750d10f57a06bb0b5

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4c9e78bdb8c5302923bb433092289feae40de67c8d0e5956fbb0d3d037b194ec
MD5 dea8153484062b162b5ba1afba771fef
BLAKE2b-256 8c30e0067a366694c530bc6b4bfa40fc3e794b9bfbe208201b36b210c6e9b8fe

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 44e6ec246f76bbc2656451a08909c6874bcdacf578d64a8ebe5c6cdcb82d9f33
MD5 dc5cbb70ec1510ef415848a37213edf1
BLAKE2b-256 d9cd2cf4c01fc2bedea7c2b47b22acfd9c2bc6057d090a8776a9dd79f149891e

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c04a6e89a5b45c9a656371dca50e31e9b266d84c542c6c9a73863f3135679f33
MD5 8c5372359a0efd3349723a63cd2b8f3d
BLAKE2b-256 642a28ebe49090f83cffe7b2e24a45e730b6561ec4b9a063ed3b924a267db49c

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.2.8-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for blosc2-2.2.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8aa80404f78b8ec79dc535bfb694a338669b90238e4d0f2587787724e19ec1b9
MD5 139067366e201dbe4cc191c210b65cbf
BLAKE2b-256 628c3521dc7c399d8dd7503c0ac19f75df8e63bb5f3eb281e15368e067d86883

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc2-2.2.8-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for blosc2-2.2.8-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 395b9dc693e8e35d8b22ea4df2a1b73ed85a3820bd5b44d706156314f9a6ec02
MD5 935b7742062bcf748f287689315af7b5
BLAKE2b-256 b4fd494f2c46a159fa8b30361833be14caad4c804d58b86baa38962ddf413104

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 463f57a8c95e71763efd516322d3e570ae1dbf0a2741238b4291e9166089e6f8
MD5 0417c8fc8b658b2a688047b267e61d4f
BLAKE2b-256 541e45f99eaa9753442430f6dba51f4d883a63c79000c1cbab29d422700fe6a3

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a2102b82254c2572f5ef8951690598939d91c011584053450cdee75e9e3c316
MD5 caa0689c13fd4ee55c8a54e992ea50e0
BLAKE2b-256 3dcb8f271cde48bd5fb4a5b4ef2345e97d374538e62ed66ee3dc5aad65ad06b1

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6228371f5c29c2858f8f146362c1cdce709cfcfd80e3d4ed32cc7aa57a18820c
MD5 25453f313ab464f440d9cb0d0d069fb4
BLAKE2b-256 7cf2874b615a0c820ac22bbad4650fe77a5282fa12ff670e1992435e865f13cb

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d8c4163ad654b620d1f3b4bc3e5992b4aebbe0cb8887cce07a8d77ece0bc6098
MD5 4f1c5b7f04525a979d980982703465c9
BLAKE2b-256 ad8a7e643cdf1528fcb337f2ddf78aa280724341cb8b47f58deb34c98d6e2e69

See more details on using hashes here.

File details

Details for the file blosc2-2.2.8-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.8-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 751aebf44ed6ca2525245eaf4b233521c017ccec2203443f4ec39051143501af
MD5 d87b15b465df45ded9c8a8713796eebe
BLAKE2b-256 aab6cfee17945a44659b130498eaa63f3d3634449e69ad22024fcbd1db59f49a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page