Skip to main content

Python wrapper for the C-Blosc2 library

Project description

A Python wrapper for the extremely fast Blosc2 compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc2

Actions:

actions

PyPi:

version

NumFOCUS:

numfocus

Code of Conduct:

Contributor Covenant

What it is

C-Blosc2 is the new major version of C-Blosc, and is backward compatible with both the C-Blosc1 API and its in-memory format. Python-Blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor.

Currently Python-Blosc2 already reproduces the API of Python-Blosc, so it can be used as a drop-in replacement. However, there are a few exceptions for a full compatibility.

In addition, Python-Blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, multi-dimensional arrays (NDArray), serialization and other bells and whistles introduced in C-Blosc2. Although this is always and endless process, we have already catch up with most of the C-Blosc2 API capabilities.

Note: Python-Blosc2 is meant to be backward compatible with Python-Blosc data. That means that it can read data generated with Python-Blosc, but the opposite is not true (i.e. there is no forward compatibility).

SChunk: a 64-bit compressed store

SChunk is the simple data container that handles setting, expanding and getting data and metadata. Contrarily to chunks, a super-chunk can update and resize the data that it contains, supports user metadata, and it does not have the 2 GB storage limitation.

Additionally, you can convert a SChunk into a contiguous, serialized buffer (aka cframe) and vice-versa; as a bonus, the serialization/deserialization process also works with NumPy arrays and PyTorch/TensorFlow tensors at a blazing speed:

Compression speed for different codecs

Decompression speed for different codecs

while reaching excellent compression ratios:

Compression ratio for different codecs

Also, if you are a Mac M1/M2 owner, make you a favor and use its native arm64 arch (yes, we are distributing Mac arm64 wheels too; you are welcome ;-):

Compression speed for different codecs on Apple M1

Decompression speed for different codecs on Apple M1

Read more about SChunk features in our blog entry at: https://www.blosc.org/posts/python-blosc2-improvements

NDArray: an N-Dimensional store

One of the latest and more exciting additions in Python-Blosc2 is the NDArray object. It can write and read n-dimensional datasets in an extremely efficient way thanks to a n-dim 2-level partitioning, allowing to slice and dice arbitrary large and compressed data in a more fine-grained way:

https://github.com/Blosc/python-blosc2/blob/main/images/b2nd-2level-parts.png?raw=true

To wet you appetite, here it is how the NDArray object performs on getting slices orthogonal to the different axis of a 4-dim dataset:

https://github.com/Blosc/python-blosc2/blob/main/images/Read-Partial-Slices-B2ND.png?raw=true

We have blogged about this: https://www.blosc.org/posts/blosc2-ndim-intro

We also have a ~2 min explanatory video on why slicing in a pineapple-style (aka double partition) is useful:

Slicing a dataset in pineapple-style

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://blosc.org/python-blosc2/python-blosc2.html

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building from sources

python-blosc2 comes with the C-Blosc2 sources with it and can be built in-place:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements-build.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the tests:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/pack_compress.py

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE.txt.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

https://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.

Citing Blosc

You can cite our work on the different libraries under the Blosc umbrella as:

@ONLINE{blosc,
  author = {{Blosc Development Team}},
  title = "{A fast, compressed and persistent data store library}",
  year = {2009-2023},
  note = {https://blosc.org}
}

Enjoy!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-2.2.9.tar.gz (4.7 MB view details)

Uploaded Source

Built Distributions

blosc2-2.2.9-cp312-cp312-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

blosc2-2.2.9-cp312-cp312-win32.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86

blosc2-2.2.9-cp312-cp312-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

blosc2-2.2.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

blosc2-2.2.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

blosc2-2.2.9-cp312-cp312-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

blosc2-2.2.9-cp312-cp312-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

blosc2-2.2.9-cp311-cp311-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc2-2.2.9-cp311-cp311-win32.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86

blosc2-2.2.9-cp311-cp311-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

blosc2-2.2.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc2-2.2.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

blosc2-2.2.9-cp311-cp311-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

blosc2-2.2.9-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc2-2.2.9-cp310-cp310-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-2.2.9-cp310-cp310-win32.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86

blosc2-2.2.9-cp310-cp310-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc2-2.2.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-2.2.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

blosc2-2.2.9-cp310-cp310-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

blosc2-2.2.9-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-2.2.9-cp39-cp39-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-2.2.9-cp39-cp39-win32.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86

blosc2-2.2.9-cp39-cp39-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc2-2.2.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-2.2.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc2-2.2.9-cp39-cp39-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

blosc2-2.2.9-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file blosc2-2.2.9.tar.gz.

File metadata

  • Download URL: blosc2-2.2.9.tar.gz
  • Upload date:
  • Size: 4.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.2.9.tar.gz
Algorithm Hash digest
SHA256 63606498aaa72d58215b618d4512d5d3de29000a7b01a870edce8cb21d237c40
MD5 d12cc4ac6cde6d37d53fb62dc17056c0
BLAKE2b-256 53ccef9893a19076b28f94b30f4746151b2e5c83a8222a66f3edd4d8179dcdb8

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.2.9-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.2.9-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0eb8ae893b60743a31feb4ed02dd96039400fb8e7fc5ff4d9adea8d70acde204
MD5 ce6ca15dd7c403bf10a976689adf0219
BLAKE2b-256 fc3594cb65def25b2227e9ac2c3cc9018664c705ad573a9074a222996ba22e30

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp312-cp312-win32.whl.

File metadata

  • Download URL: blosc2-2.2.9-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.2.9-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 658443f639975d29eaa3feea269a2f971d2da5cab736bb6462561d7efe261cc3
MD5 d0b09e89e39f0f4268a0172d88bf2203
BLAKE2b-256 435e095d2822fd9627a9cdb8bacc8772105844a89a93f0c5271cd269797bac7a

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a46f9216d63958572514354b94eaedaa2052b60b3301ec7c41c8f30c6825c718
MD5 5b7d39543c411a67ccd3cf2f9c002d0f
BLAKE2b-256 99ecc392aa6a103ca8746fbe2fa2998a8c1fb4a4c73edc3b180eaea6f9f34949

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 adaef04627713e22bc7883a35afd499266762f700d8644a65cfafbf2879d4350
MD5 09379ea9dd8cd98a4ea4668e692254e6
BLAKE2b-256 6b8739f54f45715b97a466407f587238c186006ceb7fa84e500b29d079fe80bd

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f10e14c7f3b9f14431df58f9891e490af83ae6fb3d7c2a7d05722560273a2da8
MD5 1876fdaebacfa47fd53fd7671acb339e
BLAKE2b-256 1704498cadd950eba17ace95c56f3578a4341e15d2a3174af41e24936d2124ad

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e38cc441798595f05e70d620f1124cd4c472003f9b58c17e79dd0477a4d151fb
MD5 108c724177605a5a515576e7173234e9
BLAKE2b-256 59a06d7cdc6b0db4a54b68fc890e1724e79e1bd25e20ea33ba15d0fcf07518ba

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8504a92404b2ba5112db83bebdfbe7eb3c286514acb658191434f020ea084c7a
MD5 91201ed2e85dd4ab1fc60336c8190f96
BLAKE2b-256 078bc75991688dd128238904901320a995ba68323e6dc5d98f0b0e25c28818a3

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.2.9-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.2.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 368b12e43249e55137a05506e747cc4656539afc73bf82a85b896a2f13a529d8
MD5 12eb83bf58a69ae68396de5756d37553
BLAKE2b-256 b84b880e70fa21d1f38db1204f0bcd573debb514c5b4d264d0138f5f04d3bc1e

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp311-cp311-win32.whl.

File metadata

  • Download URL: blosc2-2.2.9-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.2.9-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 ebfc1e9736d83bffa16e49f53278de6caa7b5469c44a4448800fc40009efbbba
MD5 04e59171f1fc0a3cec84c9304221082b
BLAKE2b-256 560b616d435f42f2571581ced4e6e3a0cdff69ee01078060373d725fdf52bce2

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5a4db24030be00e8ccc9ff0645716504e4caf7525b70c7976ad8434b47f04f4f
MD5 ec422c182f56af5c48b297be8bc78612
BLAKE2b-256 9abbabbdade142446acae1e518f202d774d9bd9efd06fc27b0a1e6da2c3042f1

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c11ace31c542aa6eed11708e7b92cf5d3dbbb3c1b8a691919c3bb6130caf1746
MD5 a4b7c51683cdb9939e1e809d86b666f9
BLAKE2b-256 84add23ad6d09b624bf75865a13738fb2993e9a51f8d7f6f41c58b0d64995d37

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e82b6280107b9ec05aa0ae7d86a3f73d14bd99767901cec95dab622d37cb0d7e
MD5 d27791cf297bc85fd941ffe1b5b902da
BLAKE2b-256 1f6960e0af47f852214338fd722e21b1fb2a015a54520a57b83e1aae855021da

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7746244318adeb552cfb45c95b329eb12e146159ae6506b06b4854dec4c3b2c1
MD5 d86a0e84eb2fe76bc2db43f381ff08df
BLAKE2b-256 f137faefff2e27eca407eb92580d78df2e941a0976abed4f40169c67519a77c4

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2f774b0c20b86c99fe1ba4fa7737add60d71930662192fdf66a547707a1e3a37
MD5 a85b8cd525402317fc183c436d0b380b
BLAKE2b-256 85ba9c1f1c8a4dc686f70cf9721e4d9fdb1fc01e2fc2f4f517acfb3c8bcc6185

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.2.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.2.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e24335d97ae43558d222b15141d8499c3b220b3d166350441a6d2a4470997921
MD5 bee9c8d5034afd12dc6740083ca6e449
BLAKE2b-256 5703f21cda952e6571c38b3af38acbb11ef41e685561919b5bdb69b237f63e33

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp310-cp310-win32.whl.

File metadata

  • Download URL: blosc2-2.2.9-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.2.9-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 49f3b3951764ddf6d7ad3c1c0800adef2b7780348b1fe5126b6e0970f3ea6c2f
MD5 9d0315ca989707c9dd8d0ca23443bc44
BLAKE2b-256 fe5987a283ca28e8cf72e1babd52bc7ff0e20d5d6a18de0900c1739b718d82fa

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 73c7a7afd5390d60ad8ecd1e0e5de2492c60a24cce748b8ae2da83ceda0649ad
MD5 b4ded000c7db8011c76a1dbfa27b2c41
BLAKE2b-256 30636e8a7876f05ea3ae0bee57166d16cdeddf8e3916470271b008402d68ce10

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 74a24b4efb8b608b71d8af51d5c8f16dc63f45c2145240e7d313472fa720a68e
MD5 11b9c0960c2cdc6193fc4ea1672d79f2
BLAKE2b-256 14b839d5d06300785c2a0f141e95a27c959acf7e8e2d98ff93de80c818598181

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5f9413d6926d7442847b115680567fd4ad4ddcdf46e2419cd2f5e82ee8d00f6c
MD5 9a4f85b0839b2fe17c197eb126c2646a
BLAKE2b-256 04713ed26e1df89d739edcd5e51fd8cdbfba0c4113a40eacac1b38dbe38824e0

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 562828192e3c6f4629823d836bec1d129dfdad38a7e6d2e84f52dcaf9979633b
MD5 6fb24a3a844405485fcbad6f0d826e71
BLAKE2b-256 95b142097393b8ab9ad423f7119a30fcc4694822da1bf870c68f4cc32c127617

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 135afe34913cd43b02186fb400f30e2c9bdbfe3752470d9b6b00a20e7293fb9f
MD5 593fc943999e300eeba3da034dddab31
BLAKE2b-256 c864863c9f0c6414e919132a893d9f56dc49dbf6ca1b951a261d86196a77393a

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.2.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.2.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c840bdfd97e25cd61d6e048f8d9ee6478133f3e70c880c2cb3054db93e142bba
MD5 5a145889b580c7e69139f6b4320dcf3a
BLAKE2b-256 35754ffe30ec8aca7490546440d05836a14fd0b56b3f53fcc9652e76595475ed

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc2-2.2.9-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.2.9-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fa36fa18b8d41aee7db975a318b481304e6e3558b48641ec53933287274a4ec3
MD5 63bbf8cf9f56f2ca0d2fc3d9f11b3243
BLAKE2b-256 f16ade9704f555e6941e34c5316e913128bd5542955cdf22b75e5b6826ebe474

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 25f27b50b2823e6a2e142eff02840979c19f629eb7833b45a98332a2d728543f
MD5 bfe1652f8b1380a8f67f75fcbecc6af8
BLAKE2b-256 a5beb4cab7bd7415bdaf6bda7728674d6cf2dba10f06d4a73cf8ddcf018dbe61

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f31c0ee147f5f78ceeb65b601c47b0431a0f6111b8443aeb1485547394725895
MD5 529f8929bff74979b99b1b395400cd6d
BLAKE2b-256 6013505b992b99b44662d8e710e6eba13b145c27effdf897e5adbbff374e3ed4

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 97e788170a2e80cac38f15d723f7397a87d3c522980fc4f8d96c6fa9f5a74dd3
MD5 8a9d9b40b2f92bc27c8223ae26437160
BLAKE2b-256 ad9b2267495bbca1b88ade2090e49342f0726858c50ab1a5a435fb956e500bc0

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 555468f4c77a45e35a7a878fab7679bf4705585a84b81649fc423eba293cf17b
MD5 97396249ec7f892dffde8b9345bca9d4
BLAKE2b-256 7c50e3a7ee184c80c87d03122b524262a179b15752ce3c8fcb1f8c30cf32baab

See more details on using hashes here.

File details

Details for the file blosc2-2.2.9-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.2.9-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 82ec6d1a4343868ce833380c82f60e9799794e04d35f630af948f0f3d28c3577
MD5 ed8842c4a80ad889be875eceb7ceaa1d
BLAKE2b-256 a2bb81d7eea999ae811756d76b23c79c7f1a1d311b4ed981924a65b5f92a8ab5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page