Skip to main content

Python wrapper for the C-Blosc2 library

Reason this release was yanked:

Not working because AVX512

Project description

A Python wrapper for the extremely fast Blosc2 compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc2

Actions:

actions

PyPi:

version

NumFOCUS:

numfocus

Code of Conduct:

Contributor Covenant

What it is

C-Blosc2 is the new major version of C-Blosc, and is backward compatible with both the C-Blosc1 API and its in-memory format. Python-Blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor.

Currently Python-Blosc2 already reproduces the API of Python-Blosc, so it can be used as a drop-in replacement. However, there are a few exceptions for a full compatibility.

In addition, Python-Blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, multi-dimensional arrays (NDArray), serialization and other bells and whistles introduced in C-Blosc2. Although this is always and endless process, we have already catch up with most of the C-Blosc2 API capabilities.

Note: Python-Blosc2 is meant to be backward compatible with Python-Blosc data. That means that it can read data generated with Python-Blosc, but the opposite is not true (i.e. there is no forward compatibility).

SChunk: a 64-bit compressed store

SChunk is the simple data container that handles setting, expanding and getting data and metadata. Contrarily to chunks, a super-chunk can update and resize the data that it contains, supports user metadata, and it does not have the 2 GB storage limitation.

Additionally, you can convert a SChunk into a contiguous, serialized buffer (aka cframe) and vice-versa; as a bonus, the serialization/deserialization process also works with NumPy arrays and PyTorch/TensorFlow tensors at a blazing speed:

Compression speed for different codecs

Decompression speed for different codecs

while reaching excellent compression ratios:

Compression ratio for different codecs

Also, if you are a Mac M1/M2 owner, make you a favor and use its native arm64 arch (yes, we are distributing Mac arm64 wheels too; you are welcome ;-):

Compression speed for different codecs on Apple M1

Decompression speed for different codecs on Apple M1

Read more about SChunk features in our blog entry at: https://www.blosc.org/posts/python-blosc2-improvements

NDArray: an N-Dimensional store

One of the latest and more exciting additions in Python-Blosc2 is the NDArray object. It can write and read n-dimensional datasets in an extremely efficient way thanks to a n-dim 2-level partitioning, allowing to slice and dice arbitrary large and compressed data in a more fine-grained way:

https://github.com/Blosc/python-blosc2/blob/main/images/b2nd-2level-parts.png?raw=true

To wet you appetite, here it is how the NDArray object performs on getting slices orthogonal to the different axis of a 4-dim dataset:

https://github.com/Blosc/python-blosc2/blob/main/images/Read-Partial-Slices-B2ND.png?raw=true

We have blogged about this: https://www.blosc.org/posts/blosc2-ndim-intro

We also have a ~2 min explanatory video on why slicing in a pineapple-style (aka double partition) is useful:

Slicing a dataset in pineapple-style

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://blosc.org/python-blosc2/python-blosc2.html

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building from sources

python-blosc2 comes with the C-Blosc2 sources with it and can be built in-place:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements-build.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the tests:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/pack_compress.py

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE.txt.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

https://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.

Citing Blosc

You can cite our work on the different libraries under the Blosc umbrella as:

@ONLINE{blosc,
  author = {{Blosc Development Team}},
  title = "{A fast, compressed and persistent data store library}",
  year = {2009-2023},
  note = {https://blosc.org}
}

Enjoy!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-2.3.0.tar.gz (4.7 MB view details)

Uploaded Source

Built Distributions

blosc2-2.3.0-cp312-cp312-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

blosc2-2.3.0-cp312-cp312-win32.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86

blosc2-2.3.0-cp312-cp312-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

blosc2-2.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

blosc2-2.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

blosc2-2.3.0-cp312-cp312-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

blosc2-2.3.0-cp312-cp312-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

blosc2-2.3.0-cp311-cp311-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc2-2.3.0-cp311-cp311-win32.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86

blosc2-2.3.0-cp311-cp311-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

blosc2-2.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc2-2.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

blosc2-2.3.0-cp311-cp311-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

blosc2-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc2-2.3.0-cp310-cp310-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-2.3.0-cp310-cp310-win32.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86

blosc2-2.3.0-cp310-cp310-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc2-2.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-2.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

blosc2-2.3.0-cp310-cp310-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

blosc2-2.3.0-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-2.3.0-cp39-cp39-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-2.3.0-cp39-cp39-win32.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86

blosc2-2.3.0-cp39-cp39-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc2-2.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-2.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc2-2.3.0-cp39-cp39-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

blosc2-2.3.0-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file blosc2-2.3.0.tar.gz.

File metadata

  • Download URL: blosc2-2.3.0.tar.gz
  • Upload date:
  • Size: 4.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.0.tar.gz
Algorithm Hash digest
SHA256 2a1c664915b8226d602f03767fe0c8228232d0327546068e8952e1fbc2fd25f7
MD5 9fa984057033b0c787e0c00e4b22c970
BLAKE2b-256 58a8ff71cc6bcdcfa8003791b0f4db56641b197e9e24ccd4a66c83e65f16e57d

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.3.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7c30836a3bd2de31577e5f82ed77d0ce07bf7ce95da59cfb7c160bad1da79a86
MD5 cabcae51f4e2a4c6ed2111182a214d47
BLAKE2b-256 8e7b2b79d53aaece6e78a24d0e644aaa1c3729d756209de2990ace7ab6dd210f

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: blosc2-2.3.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 c8110d2f12337fd68c9a00ab3708ae3b394224e131c39461d8ef76d11a85f310
MD5 b948a1873b56bfb24627a41e28e5486c
BLAKE2b-256 fe038766794a2c779047e863d475df01fddf7803affa2346a3c8b1d3eb685bc1

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d8f161690474ed16afd7e71d5b35db051dce1c1e0bdc61f8e78f6084e0a68e99
MD5 91b101c5490948fbc1e67d7e58300472
BLAKE2b-256 b9633d1f49fcfea9d2700c61fde53de3cb8a1097ab37b63ab8ecefc808a8825a

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6d9ec4bad030a08ed366fde7448456c949e3f4287686ffd8f394c11994f5dbf
MD5 62041d348a28c5a8aebe142f484393f8
BLAKE2b-256 71aadc5fbb3dc67be83b9df2496d9a7c0cb48aca7cfb1fb4e93a123bbdc8f460

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 37caf93bd6580b0bd80ceb22ce15b81fe085e1238a0dab57040ba371cfa45602
MD5 da03741b49db994f645de7ccbe3e4732
BLAKE2b-256 246ab2588c734b2b78e2319e44a40fdd4e640385ec98b3da25d3dc7009c862b4

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fb5c16a888757689a967deeddbca67bfc587e23efaf2cf12c38ee530ba071452
MD5 339ec4bea0811f23a253fe880456d574
BLAKE2b-256 960b7ab3a5e8142f4e0cc632d4df6393276c68a06a849c27d75324ed748f3b34

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4fb9b1fb512be4a82fc17dc47d8d6fe5c8ab49abd609e29bd6a2fd7b151381e4
MD5 46889dc32214ea6cb1c2e37b21c7d50e
BLAKE2b-256 ce2c36f009dbacb2a9162a12fb104b360aa6e491fe988838ad2408b21a837e8e

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.3.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cfedb48c5ebdf22f40e2ed2332cc4bd0b13cf2ae9e9254070d9249065dff7040
MD5 ace52116f61c494ca956054880a424af
BLAKE2b-256 73fd1e8352b7778056ce454160fdba9eda462e30ca47ee8e1e37ce36585c3f2c

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: blosc2-2.3.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 cfc5f8c0dc040445c2205da63dcc8c656aac671e04dcee02b566434c5a175ac6
MD5 4fd7b427d79de8a4145222ae938cb416
BLAKE2b-256 ac9419538804e191b227f28ab71a76fa80e16b9cccc39c8c8ba38d1ae338b795

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2dccfa9932e4ab2037122110e64aa9f3b213044821d2b1cc58477c7585c8077c
MD5 3651f18c516997efdace46599bdb6fff
BLAKE2b-256 390864ac3227c3e912ab3d295429eb5c072a2d765c65fde0cd29ee1ab6072248

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bb37e557f7c670893aae304082ab021eb3a9d528efa775901cf340a9fdb7068a
MD5 8c1994e264bfe0c9118abb21d33f6279
BLAKE2b-256 6f1db03ede7b5eb3a03fdb491bff9c262df36faf6f515bc288f2e13dec429c3f

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a98155b3f2880c33e6ffd5aca9ec08d00f9b3e1451a0e31e031f1c1c04cf0ed4
MD5 8477d643b57dbc907690da182ada11a9
BLAKE2b-256 64ce93c8f2c0d206ab54c671916b300418965edf09eada773fbd20a26eb96212

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 55a836e5a7055929bb0a9bf7a2794a3a87282d6e222327a32fe1f85d1d1fe322
MD5 f8520132ba64b1e5f8fbb1cb81f71667
BLAKE2b-256 0963006d68ab59252f1bc7c088e4356c54bebe7611677947ca462303605f943b

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2841b866615f4e92b4051b17c5d28123ce0501f7c5f34ddbdda452dccf19c405
MD5 cd8c1265e3af605c8511599f78267186
BLAKE2b-256 240c9525b45018c351005a6a5512b99631a4fb5f0fbecdd7f60818be50664bfa

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.3.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 430a9b175c88598844271d67bac92a077b59b6c96955170b3a7b16f634b4bd56
MD5 3571c9b2e70d3f7d40bbbf988b5b41e9
BLAKE2b-256 84b15fcf0a265a02bf8c928fa09bab4875cb1bbbd9acae05bfd8b9424a21de7b

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: blosc2-2.3.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 de4ddce996c6d73f7bf6c172c5e6896a11708c6a0ce3e61dbaf7ba6ba4d055b7
MD5 19ff7eba27b23c89594a66da3eddb7ec
BLAKE2b-256 41ff7ce9ba3425d5e4cd265b3b838d4efbfcbd6074bacebcc1dc604a07be2f53

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d10c41d5f7a7c8bb1ce06bef91b4f2728bd6488c188cfeab83c5e0815a8f6ff2
MD5 39df07ef8fad740898cc8d2e9ea35758
BLAKE2b-256 db5d2c46e756ac8486f790253ede33895801bbc455c376df3bb87fb7efd47bb9

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e489c5356974f84b943c78f3591973069f003ea92a2cdf77cf4a20518b7e36f5
MD5 a16fef480e9ccb7864d9f7761b4cb9f3
BLAKE2b-256 1b39500beb13f51f29d9dcb23fa17adb6e3bff682868eadd25bf4a48405942b0

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3d6a5b12d005d6597e85d0d0b953eb441d660045fb56e4188a24ed9729330709
MD5 ca07ab6fd67667cbe03f2501eb6ce51f
BLAKE2b-256 c0604944e43e60020a54803dd9be1ef0b5ec5ff941c12cd5c652490e90f90179

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e379249f7f50e9544cbc1c312f1317402ced90f7c6f94b00c023fc55fea83409
MD5 2ff3981139bde7b7d5a7ae84be8a7f71
BLAKE2b-256 4042c7088a9108d4d24b6e01545232a572e144123a010e460ed3123a469ab9fc

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 39cfda02e9624e04d695880b3f1d02cd70eca8ba5847443c57fb857e2dfebd65
MD5 90d27d69d9e2c6451c9fc3929e2d8960
BLAKE2b-256 007d957b839017c1198f9fb01acdab1d14e7f8199277a4fc2f7d92f7a7cf8d2c

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 97d32972a97ada1308ccabe788569f7c7f3470afce781720b5e4077550a42d01
MD5 4a14308d03cadec7874282e339606088
BLAKE2b-256 415c9053fc053d8edb358cc7c753d443fb7f49b5f64c0dd78f5cf9f8cac74cb9

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc2-2.3.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b7c191a7ff1d365ef9606f126c639dbe4052793535b1217329d4d7e8c69ace4e
MD5 30d59837dfdd70d57347f628cc0b232e
BLAKE2b-256 4353a4885f443666d952cd5ad05fd66215beeda8d787b9767b921e03e2d1f885

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 15d7b1c630b983a6baa682045d7d813e89b1a05e0c83d9b541a84a8a3d060b30
MD5 68cda38bb88bf05511a6160e1797c50b
BLAKE2b-256 d7ac46b6060039d150560a5d87b0a4584ac64a90610c5b307d2c29e12bcb642e

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f69e2aa30dbfa9ae830c62bc0dcdc0fa0240005f03271d2daf38bc6bfc45150
MD5 4001235e226ccd0ae6454ba5b599e823
BLAKE2b-256 59f74ef0af7cfdd54a3b4aa2a813af440c1f4130bf66d1e2d40f788cbca3d873

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d914071df65b62bd363f1f7833784447df4b39611eb972c9d770ce26ad0c8199
MD5 e4934fb88c65fec7e3c13e0cffe77253
BLAKE2b-256 2c15a01d5bedbf86cacad7f81809b85ea9bb42c01cc2e826f639e865fae15e8c

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fa7fcbffb7b3d462cb91328464457f76888c1e68bcd1a256837419e2e8a1eb44
MD5 9b49146e3a2bbed84df786588944c52b
BLAKE2b-256 2f447a1bd07fd090c677c7054e3ba8a632f35c030b61f050b3578690b6ed1a1b

See more details on using hashes here.

File details

Details for the file blosc2-2.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 48c4271651ec58c2e72fab13e4a59f7ac795dec833501d061eb3a340dbfb725c
MD5 3f04ecdda082f36b625253a45ad22f5c
BLAKE2b-256 0893c8b67a925582122fab1e3b9f0a6d55878377c0e999de771678f727e18e1e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page