Skip to main content

Python wrapper for the C-Blosc2 library

Project description

A Python wrapper for the extremely fast Blosc2 compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc2

Actions:

actions

PyPi:

version

NumFOCUS:

numfocus

Code of Conduct:

Contributor Covenant

What it is

C-Blosc2 is the new major version of C-Blosc, and is backward compatible with both the C-Blosc1 API and its in-memory format. Python-Blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor.

Currently Python-Blosc2 already reproduces the API of Python-Blosc, so it can be used as a drop-in replacement. However, there are a few exceptions for a full compatibility.

In addition, Python-Blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, multi-dimensional arrays (NDArray), serialization and other bells and whistles introduced in C-Blosc2. Although this is always and endless process, we have already catch up with most of the C-Blosc2 API capabilities.

Note: Python-Blosc2 is meant to be backward compatible with Python-Blosc data. That means that it can read data generated with Python-Blosc, but the opposite is not true (i.e. there is no forward compatibility).

SChunk: a 64-bit compressed store

SChunk is the simple data container that handles setting, expanding and getting data and metadata. Contrarily to chunks, a super-chunk can update and resize the data that it contains, supports user metadata, and it does not have the 2 GB storage limitation.

Additionally, you can convert a SChunk into a contiguous, serialized buffer (aka cframe) and vice-versa; as a bonus, the serialization/deserialization process also works with NumPy arrays and PyTorch/TensorFlow tensors at a blazing speed:

Compression speed for different codecs

Decompression speed for different codecs

while reaching excellent compression ratios:

Compression ratio for different codecs

Also, if you are a Mac M1/M2 owner, make you a favor and use its native arm64 arch (yes, we are distributing Mac arm64 wheels too; you are welcome ;-):

Compression speed for different codecs on Apple M1

Decompression speed for different codecs on Apple M1

Read more about SChunk features in our blog entry at: https://www.blosc.org/posts/python-blosc2-improvements

NDArray: an N-Dimensional store

One of the latest and more exciting additions in Python-Blosc2 is the NDArray object. It can write and read n-dimensional datasets in an extremely efficient way thanks to a n-dim 2-level partitioning, allowing to slice and dice arbitrary large and compressed data in a more fine-grained way:

https://github.com/Blosc/python-blosc2/blob/main/images/b2nd-2level-parts.png?raw=true

To wet you appetite, here it is how the NDArray object performs on getting slices orthogonal to the different axis of a 4-dim dataset:

https://github.com/Blosc/python-blosc2/blob/main/images/Read-Partial-Slices-B2ND.png?raw=true

We have blogged about this: https://www.blosc.org/posts/blosc2-ndim-intro

We also have a ~2 min explanatory video on why slicing in a pineapple-style (aka double partition) is useful:

Slicing a dataset in pineapple-style

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://blosc.org/python-blosc2/python-blosc2.html

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building from sources

python-blosc2 comes with the C-Blosc2 sources with it and can be built in-place:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements-build.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the tests:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/pack_compress.py

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE.txt.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

https://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.

Citing Blosc

You can cite our work on the different libraries under the Blosc umbrella as:

@ONLINE{blosc,
  author = {{Blosc Development Team}},
  title = "{A fast, compressed and persistent data store library}",
  year = {2009-2023},
  note = {https://blosc.org}
}

Enjoy!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-2.3.1.tar.gz (4.7 MB view details)

Uploaded Source

Built Distributions

blosc2-2.3.1-cp312-cp312-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

blosc2-2.3.1-cp312-cp312-win32.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86

blosc2-2.3.1-cp312-cp312-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

blosc2-2.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

blosc2-2.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

blosc2-2.3.1-cp312-cp312-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

blosc2-2.3.1-cp312-cp312-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

blosc2-2.3.1-cp311-cp311-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc2-2.3.1-cp311-cp311-win32.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86

blosc2-2.3.1-cp311-cp311-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

blosc2-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc2-2.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

blosc2-2.3.1-cp311-cp311-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

blosc2-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc2-2.3.1-cp310-cp310-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-2.3.1-cp310-cp310-win32.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86

blosc2-2.3.1-cp310-cp310-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc2-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-2.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

blosc2-2.3.1-cp310-cp310-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

blosc2-2.3.1-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-2.3.1-cp39-cp39-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-2.3.1-cp39-cp39-win32.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86

blosc2-2.3.1-cp39-cp39-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc2-2.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-2.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc2-2.3.1-cp39-cp39-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

blosc2-2.3.1-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file blosc2-2.3.1.tar.gz.

File metadata

  • Download URL: blosc2-2.3.1.tar.gz
  • Upload date:
  • Size: 4.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.1.tar.gz
Algorithm Hash digest
SHA256 d76b839ecfe2044f6ba43db9db95d223b37deb9225b5f337718caace62e70002
MD5 83f56c6906dc8636d493d0e5bd74f324
BLAKE2b-256 11ee8cf3751166f1fea4a5d5b80499af6092e9ab52f21783064269f1ebf938ed

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.3.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1a973bb5f4ba8f17e094b2aec92679b5d0ce9ef01ca2e4c6373771297f342b62
MD5 fa16af50885ea07e0e1f9395647a9890
BLAKE2b-256 d2f9d79b35304ac811e2509b9942bc884f4ff7d8cb573157ceac006383053400

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: blosc2-2.3.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 66abff3be98d9d1399c91a1c6b9aff5bf1c3dc98197d34c9e67d098f575ec194
MD5 760d145a3355bd043171d2272e2fddd1
BLAKE2b-256 98de7e997bc7b4dc2d85a69650244d03d1f3e13d80d1d7b8d95844a26a968ba2

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f1a0c3e0c95eb88b86fb06b59baeaeff1baf3f6c30da6b7627fc9a7520b4c010
MD5 95fc8419aca5f29f206bc53d34763c3f
BLAKE2b-256 eedd92fd778aa6f9b166bc479a105d8a8e96303fe9084b846fc293867f754300

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4dbaa098b3c10a161280498a063ea7d381a3b7dbdb17a6c66810372640db9075
MD5 4b9efbcbb7de8bf35871a79a8d91f33e
BLAKE2b-256 a56aa98811c80f0be26b445d822f74b4f7d84a8b8c212119aa5c1b5be1718daf

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b0dfd563a2bbcbc3c5f2f10fec53862a4bc02d0e7057dfb1bec45bb7a26122d
MD5 8f50d7a08c8c1d42b04c2a1fa315a64d
BLAKE2b-256 545cf539ac7fd1abfcfbee9fb658b0734eb954efc1420db7a6dee7e8b14e2498

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b392772e333a890bd42abad30ef1ba0dfdd03b734fed001c55382019d8b1c1aa
MD5 cc27102574ab4b987db507373ffa1e4a
BLAKE2b-256 568df60c17106cdef080793897f44605d2f53f325623771237a26893db4c0091

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 afb4b46ea0597cc90ae40f51d7bdb9460d91dcfd45f88f89dce89b808b209102
MD5 6e6106552a2e2b6190fd331aaaf71470
BLAKE2b-256 505971ac5b067b27b2d94d315098c0e8a8dec579b4c4416f7d3f809d206c43d8

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.3.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 545c580935b568c8e1b476b75902b27e886d7f7975e1f6e6518b69b063150910
MD5 e424c1618d3c45f31423099ebd7243a4
BLAKE2b-256 c13e067fb60fc571c0894c30371b8fa910e75cf43e82a3e7a6d5356e42910960

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: blosc2-2.3.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 be5daf95854fa14eb6c0f1de86f1afe388c9a5cb6dd2be05c31163796bddfef8
MD5 96781d871d7e74b4ee290c5b9c8ec6df
BLAKE2b-256 5d88591fc07f4df495b87e82c776c9ceff21dec669e08c0d7ff7b3e48ee69582

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b4f479cd4e7d95eedb69ff72d803a2e8b1eabdc5724b2da7bd5a6f4d73c96833
MD5 79c9b4b21587ec4ac1e71f88b694c802
BLAKE2b-256 2d59093e25b5ab56234e9c238ab03d908ba39238518f1b62e21e75f1ee6fef54

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6bd982b437be5a3d21dc7f6dfa1e9febe056be090c21208c8422bb2013d36046
MD5 e669af58901fbb10b44a70d972552feb
BLAKE2b-256 054e4aa4e1cdbf290fcda499951f41f0a68564949f8a462e516778ce8280b679

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 00d000a6b42044e970de18495007b0a3de2d13385fad3b3bc48c9376b1531a3b
MD5 8830afbc55fbf987c5efdfdf3bf1524a
BLAKE2b-256 1aef6c31d0cf4cf419dcf391020789e507c312fc909d4c179eec529763917a48

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 62354c09aa8ba12a63e7dfb23659f40866752eb2f2d3f55ebc65485f9f7cdefc
MD5 c7fac90643fb358d757486ce96430c11
BLAKE2b-256 7108ce7233ed4496209920f6e7953ea23dd6a069936db9b29dcbe1441204168e

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 de07c31c65b3abcd62338dcf929f67aa81e9eb8dbaa6b6d52e4dd6a18962a781
MD5 16bef9e0ddc2118ef0a2ac10aff7a4d1
BLAKE2b-256 8e40778c577c914ebc6e6b49d612a281cd281bdd44220bb7dc53e853244663dd

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.3.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b4ba2f1c7af60efb414783fd13b61491e3c542dfe1415c8416210d6759873e7c
MD5 f78ed96f6003cb30fb04f3d907fa8a03
BLAKE2b-256 c6431f17c87af8684829b089a2f4c4bd46010b8229654e79e2de4843931f97fe

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: blosc2-2.3.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 946c755b48cc088e02ddc327407cd9d06f8afd20f315eb4dccdab116b3a1add6
MD5 758085a2d7a9f6f0a191fd44b2e5f74f
BLAKE2b-256 082b455474a0b102a8e146d3b5a58efb52ec0339ff0f12cc6649890127c5d0ee

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f2acd72742a21fe2ad8f77e92bc493af5aecbe62e08bbb7324c5ae1f61d53c3a
MD5 09e555f1220beb02b32f3ab47b496c78
BLAKE2b-256 9ca0864f0e33b1e9586a16766b073020779497bc6b31cafb1e9d2b5d18892d16

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a7e9e71daaaa5ab12c9766801a3884c21e8829c07131416faa6bd9c2af5f797
MD5 0d0a0ad5f5a577f6a4919b74a2277626
BLAKE2b-256 de69ff8fc14ed656f49176cff7bfb03454631079f596cfa48647f8766b9361dc

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a690d3ee5d68296874e5069865118f577a0d1dc5697edb19394e174ab88506fc
MD5 f50823faa4fbae7d55aae359190fec36
BLAKE2b-256 ed70896395d9b787ce12b64383f9ca7ec592041e78343248da5cc462207d0b5f

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f1f0e3f15f7755637a6681e746b760e9d46ed61d8b53fa5e59a1b22b73f67a96
MD5 a65a5f5ef1d7ac0a0a3cae3f7137b465
BLAKE2b-256 7ca6e621bd797e7874d0997ca6bac4dd3b527c1ed0c67fbb43e0fa1f72a57a90

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 70d7b5993ed6af56d2d76a82edd03d06fdd7eb6f735f1daeca63ddbd99bde16c
MD5 6c065d513c5fde1a7c65d92656e8d273
BLAKE2b-256 5f43bddbdc61bce8e7277a3d52af0f904da19878075ca8900e3387d81beab981

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.3.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 042164f59f5949745438edcf52a1720e6a142f5494ddba2bdd6646acf88d35d3
MD5 746e777e3526561dda4ff0d1e62dee07
BLAKE2b-256 28634faf0c2af99b6bf6b5430d0c86b4ed209c46651d4e3f1606b8596f077d13

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc2-2.3.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for blosc2-2.3.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a2ea0b358e60a23138556fdc24abdbf557247280b35445634178f2f0f1241a17
MD5 311168f5ec104e0df11c0aa588490820
BLAKE2b-256 ddad20a374e7943be19352eb68cd82e770486ddd1fffba65c239c0f0e7902310

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 14d70bf7c7a819b286b0cceca778ecd4f5dc0ca31ee288496e838de6f3d1fd46
MD5 274b40d1e9385f742bf8f4cc3199b9c4
BLAKE2b-256 b909594740c070249756135c87e7720c74cdff64bff53dc940e3d509715e0c0d

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec79f835cb5bbb6ccd45261de73451976487c9d34a3be39b2b2b2582873c237d
MD5 0e82c69e1ec1a91f940de94e03fd420c
BLAKE2b-256 069f6a08a792ad4633cdedd17adb0c83cba4e3692ad4c2de11bee729d3313be6

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ba13b4491680d65c4caccffd83d54dcc17e8236b9241710a0cc3cded56a5d9bf
MD5 9154e03e29e870ef3b021fb9697e8d2e
BLAKE2b-256 2effb52c3536b9e1eecd137e0ed9fd86cc5f89aafbb6613f7a538ca380001700

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 976d4d4525ab1475414e2dd44375d88da4a5c395b2334c3d5ede0b7fd836f8b5
MD5 6e6b6649e45b6b49760c429ca6887285
BLAKE2b-256 247462f7cc30ab2d82fb66f79e2b7f39f62c357045198a11a66aac5cbea12f4d

See more details on using hashes here.

File details

Details for the file blosc2-2.3.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.3.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ff61c594d96c6830dd5b7928a12d7562330b7e31d89cd4794aea7354c89ae71a
MD5 f93fd72a2a1255499a7de52647ddbe60
BLAKE2b-256 7f2670072c453cdd6675a426a019d6e192ce3acca7d95320cf4bd01343b61cbd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page