Skip to main content

Python wrapper for the C-Blosc2 library

Project description

A Python wrapper for the extremely fast Blosc2 compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc2

Actions:

actions

PyPi:

version

NumFOCUS:

numfocus

Code of Conduct:

Contributor Covenant

What it is

C-Blosc2 is the new major version of C-Blosc, and is backward compatible with both the C-Blosc1 API and its in-memory format. Python-Blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor.

Currently Python-Blosc2 already reproduces the API of Python-Blosc, so it can be used as a drop-in replacement. However, there are a few exceptions for a full compatibility.

In addition, Python-Blosc2 aims to leverage the new C-Blosc2 API so as to support super-chunks, multi-dimensional arrays (NDArray), serialization and other bells and whistles introduced in C-Blosc2. Although this is always and endless process, we have already catch up with most of the C-Blosc2 API capabilities.

Note: Python-Blosc2 is meant to be backward compatible with Python-Blosc data. That means that it can read data generated with Python-Blosc, but the opposite is not true (i.e. there is no forward compatibility).

SChunk: a 64-bit compressed store

SChunk is the simple data container that handles setting, expanding and getting data and metadata. Contrarily to chunks, a super-chunk can update and resize the data that it contains, supports user metadata, and it does not have the 2 GB storage limitation.

Additionally, you can convert a SChunk into a contiguous, serialized buffer (aka cframe) and vice-versa; as a bonus, the serialization/deserialization process also works with NumPy arrays and PyTorch/TensorFlow tensors at a blazing speed:

Compression speed for different codecs

Decompression speed for different codecs

while reaching excellent compression ratios:

Compression ratio for different codecs

Also, if you are a Mac M1/M2 owner, make you a favor and use its native arm64 arch (yes, we are distributing Mac arm64 wheels too; you are welcome ;-):

Compression speed for different codecs on Apple M1

Decompression speed for different codecs on Apple M1

Read more about SChunk features in our blog entry at: https://www.blosc.org/posts/python-blosc2-improvements

NDArray: an N-Dimensional store

One of the latest and more exciting additions in Python-Blosc2 is the NDArray object. It can write and read n-dimensional datasets in an extremely efficient way thanks to a n-dim 2-level partitioning, allowing to slice and dice arbitrary large and compressed data in a more fine-grained way:

https://github.com/Blosc/python-blosc2/blob/main/images/b2nd-2level-parts.png?raw=true

To wet you appetite, here it is how the NDArray object performs on getting slices orthogonal to the different axis of a 4-dim dataset:

https://github.com/Blosc/python-blosc2/blob/main/images/Read-Partial-Slices-B2ND.png?raw=true

We have blogged about this: https://www.blosc.org/posts/blosc2-ndim-intro

We also have a ~2 min explanatory video on why slicing in a pineapple-style (aka double partition) is useful:

Slicing a dataset in pineapple-style

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://blosc.org/python-blosc2/python-blosc2.html

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building from sources

python-blosc2 comes with the C-Blosc2 sources with it and can be built in-place:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements-build.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the tests:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/pack_compress.py

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE.txt.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

https://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.

Citing Blosc

You can cite our work on the different libraries under the Blosc umbrella as:

@ONLINE{blosc,
  author = {{Blosc Development Team}},
  title = "{A fast, compressed and persistent data store library}",
  year = {2009-2023},
  note = {https://blosc.org}
}

Enjoy!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-2.4.0.tar.gz (4.7 MB view details)

Uploaded Source

Built Distributions

blosc2-2.4.0-cp312-cp312-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

blosc2-2.4.0-cp312-cp312-win32.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86

blosc2-2.4.0-cp312-cp312-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

blosc2-2.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

blosc2-2.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

blosc2-2.4.0-cp312-cp312-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

blosc2-2.4.0-cp312-cp312-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

blosc2-2.4.0-cp311-cp311-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc2-2.4.0-cp311-cp311-win32.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86

blosc2-2.4.0-cp311-cp311-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

blosc2-2.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc2-2.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

blosc2-2.4.0-cp311-cp311-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

blosc2-2.4.0-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc2-2.4.0-cp310-cp310-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-2.4.0-cp310-cp310-win32.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86

blosc2-2.4.0-cp310-cp310-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc2-2.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-2.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

blosc2-2.4.0-cp310-cp310-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

blosc2-2.4.0-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-2.4.0-cp39-cp39-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-2.4.0-cp39-cp39-win32.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86

blosc2-2.4.0-cp39-cp39-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc2-2.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-2.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc2-2.4.0-cp39-cp39-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

blosc2-2.4.0-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file blosc2-2.4.0.tar.gz.

File metadata

  • Download URL: blosc2-2.4.0.tar.gz
  • Upload date:
  • Size: 4.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.4.0.tar.gz
Algorithm Hash digest
SHA256 43687a9ebdd8befba962885fb991ab54d2710513696263f79d383aa22a7b1833
MD5 aba93b4b1a95ce4cf81942114bebbeea
BLAKE2b-256 89738bd60f59fd090cd00e8291f07441e229e062d55b3d46eb4ab87de94ea556

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.4.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5fef27217fac665eed97e30b39c7ca1f810637ea16637ae155d80df4fb5017cd
MD5 aa9363b5a3937c0ce57121e833bfb398
BLAKE2b-256 75a0245d0fee26a9a0362977f425a886914a0cb326f403f2832beef0b2b45336

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: blosc2-2.4.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.4.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 1249a39b2d5ca7ec755f396108efb209d153130afe6783d04aeb2f9a828a4b67
MD5 a6c7bca1601d1c79d01fc1c25956f928
BLAKE2b-256 92d16372e39dfb3fcc9c74753b8fc286585d99c02241442f27d8253439df74eb

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1c05c6748d71be867b5e66fb0915c97e3852e1cf9bcb4af8eb9cf1d2a6c517a1
MD5 575612d1ff6d1019c1b2c0515a9e0c96
BLAKE2b-256 9bdccf6099fb557938db07587143808440f9bad89f8b9af646b83ae7a3ec15cd

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2292affdf9a0056e1e60e949c3de1a3c47603b2b5e3b7d9ebf96deca468aacdb
MD5 c864d65506e82005fd23658bcc65f11c
BLAKE2b-256 b090e08b28f37f66aefc03341bd1092bb02bcc6b9a1125ed32716f9f711060de

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bfd17a8b533d64320e636f67d68a4361febc6c18957d84022f0cc2cf6c0da77b
MD5 99ca974c3bcecb8cf8b218c444e3ce37
BLAKE2b-256 d3fea79225d1cde0ab9221ed0dd25bb4efd572d391b245aabd1b8303b0022cec

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7a180ce8c49b8897eac60e51f990c93783dc4a8f5e3dc0dcc29ed4f60ddfe291
MD5 7da016c0e7728e2b488c34e9e5e88b94
BLAKE2b-256 cda3a4d1f1984b135aabb7454437e726ff87b2ecfa85771f07eb73a541fab591

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a9cefd054da030d86b318c9b0d6383ba831e7ea0a11bad7bd413ae42e1ef755f
MD5 fa912b788e19fbdb7da36248048aba1d
BLAKE2b-256 bb55d2d9efb2990005aceab4df1648e3e440d4018d8870874a071243e30ce688

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.4.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 09e4ada928d54ebcac77d66265db030d235466b2e5a43001859bd97730658528
MD5 6a2bad96438e065a8a515c7cded96863
BLAKE2b-256 9c2468e19daabf0601452ae236b31f54d21b3796180b7d7f1a9d4cb6d8f1a649

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: blosc2-2.4.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.4.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 0958f899238507485d2a260b6bb21e06e20e0841acfe73caf04697dc758d5cc3
MD5 35007d896dc130cf34d21840d29be4ef
BLAKE2b-256 de427d509e939e19ad7bced2f57b5746bfd98e5b76a84c9ecd7071a44fc19530

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e3e4e64317255bf56b6349e817d6eaa4f25c520f40996d1dd604f1337e5b8e80
MD5 0b78682a3d1cfebf230446f298cd4438
BLAKE2b-256 2cc16fea931ca64e63bb36616a55b0f271a85213ec099cf2ef4c0c52c23fa107

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 43170e534d9e2d2822dabcde0a993b978999f9c68080292b74eac9502257c7dd
MD5 ac7a4939f0beabe4b46946bbf1ca1cbe
BLAKE2b-256 5389e0ab7a736cc3e191ba51d665e4f9e58152152817b6ea6a62a994929f1644

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5334e9a48f1cab2246fe08c535182b61f1786cd7d50164551f0115e6cdf45457
MD5 0d2c39b83a0691b505da6bf887f0f4c0
BLAKE2b-256 714585acc5558ef7684121838ba1173808f23e2e245096815fa3f8175f0ab4d3

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cf8b64a7506ba4d834988eb863410bec4ee62c8e523c2ff73b0ee636efd39b3a
MD5 6d4d766ed0a18bd7104f803d772cf6f0
BLAKE2b-256 f13b99134f6c36e3f6ee20e6102b56e16c09632f5ddd669350abee25f31a910a

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5e4529c05a0772bebcf58678b2b0d0465cb836d43c2882c2d82b0b0a6c3b1173
MD5 39eaaa16483ed620a0478cb831dc02d7
BLAKE2b-256 3c4ea0c06c0cccd7f676abf452bcd6f18239c5da7d21fe87e8f3186e181ab3a6

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.4.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 92a25def994313098934bc44ada2d7ab8611e2ff0fc2923e3c417cb47ffb97fc
MD5 8898ade090494f65cde8cd31cb5f2195
BLAKE2b-256 83b14e57edbd5314c2d007d3669eb37faaf381407e97085f1cd901293c5ad503

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: blosc2-2.4.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.4.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 497717691e3e3c4253ad574b0405494c68f537056a510cd5f9c419c49a976533
MD5 85ab6df7d3f9a4ee9845b96d0b031ee8
BLAKE2b-256 47b424bbc99daab7ceb1ad7b4f8f7d113881ba78e8bcb9ef64eb5bf09850e8d4

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fdf1c12e29045807ca86e590a1b3f018277fde4af9ac80a7bab7036c52e68169
MD5 1c374aadb0d99c80b6abdb2ff9fed01e
BLAKE2b-256 9d1f39aeb4a59af5f5e23e74f906a427d017807099c7550a78449bfbe4853599

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d220110b9d3b95667879999a60cb56c3706bee93e5e64b6177c04f84e5a4a49b
MD5 9a19000b2dc7e26a0abb395629a10172
BLAKE2b-256 7c51d3d1f86fee0f0b89ebc19e59c2ed42d77b80e6be0f755df7fe33c4263c77

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b777159fc9ef5ee45da8a64755f9ac965b642774dab86d89ad12207e9b0fc894
MD5 a95ff7160245743a44d1d44bb92332a8
BLAKE2b-256 427372060ced82c0b4e4510c81707ccf44e6f2b62618dc98807ae96deb1d021a

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 12c1f4dd9eae6e1f6a95cabd92e0a18063697c2f32329b4dfa8af5d5b075c86c
MD5 e74b19c7108ccdd4d14ecdce6b76aebc
BLAKE2b-256 3957323709682921b96ca0a309fc2f9935a1d89b5795f5a5063c1c80f14af4c7

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8ee3fb14f83e894ef4491b11b1d12b3b374e4d8b1c632d9d0c62c66be5c2c263
MD5 54862154f99ce97c12a5a052ddae76b5
BLAKE2b-256 065f62ef73674f34de7d9503193e3770ba7891e8761cde5cdf94ee6fa71061d7

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e7400095856808b2b5016755a7a771a65d698812459f1d87906598ae53c130b3
MD5 c419915f8e77ea1e972a2eb214599f4f
BLAKE2b-256 d0b57a5a70e6ea72a29039e29b95bb56eaa3a59933067092e353ad9f66ad8350

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc2-2.4.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.4.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 60aaf2988516b0ef8dbc71b73b1a5aa4af18bdb4874fee52d725e81c78d5a562
MD5 486f57f0da55b46ba7d1d20e7d0f1823
BLAKE2b-256 a028f69c0218f25743eaa01794b338cde3e5a7c7aae63c260d7f18cdc9e1bd35

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5fbd40e36def428aca963a5aeaaa1874e21ddd80b9c788d753a1f1d182cdb4a5
MD5 9f2fc4beb9e7e52f51438ae3dce4aa4c
BLAKE2b-256 65bfcf7756b21da03592170c163ce6fca55b67f10465b6a4463823e16f2605ab

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2141dd8a04a775f374d12ca6c485208d242c67b12aeb91b025946da1c3cfa5ee
MD5 00f94626e11215a37b018437dcb03397
BLAKE2b-256 907d1817e09e3fc83f72d38e12abe416eb5ba0d5aa21ddfa9e3ffd3b5d2caeb0

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 32fd1d796b8c4692bf57fd2f9ea9159420087e090561e92ab61d429a21a3d5cd
MD5 a267e7e0f08d9e36c96f4cb81ba8cbd8
BLAKE2b-256 d541a740fb738aaa6da61ffe2be49e86ed5398ebc2c763b8d8d1c9e1acb591b5

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 10eda33ae55f5ced9d99fb551728f519ddd028dafc8abd5ae24f40626d6c4f0e
MD5 a59f8a57fa6bfbabbeb4f68f4127dd46
BLAKE2b-256 4727f2f095cc4dd101c4dcf21469751857f107c460de3beb61d16eb87ed0981e

See more details on using hashes here.

File details

Details for the file blosc2-2.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 36c1edd3e31d446fb1e0dddc6b0cb27b58c79145cb4df74314a502a9cddf92fc
MD5 53e47ec892933220a0b17e23d9587e35
BLAKE2b-256 cc59ecd33a2d5dcd71237fca3caf91ae7aac40f0622cff0f22ed6d5b99cb610d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page