Skip to main content

Python wrapper for the C-Blosc2 library

Reason this release was yanked:

Introduced a dependency on blosc2-private.h

Project description

A Python wrapper for the extremely fast Blosc2 compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc2

Actions:

actions

PyPi:

version

NumFOCUS:

numfocus

Code of Conduct:

Contributor Covenant

What it is

C-Blosc2 is the new major version of C-Blosc, and is backward compatible with both the C-Blosc1 API and its in-memory format. Python-Blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor.

Currently Python-Blosc2 already reproduces the API of Python-Blosc, so it can be used as a drop-in replacement. However, there are a few exceptions for a full compatibility.

In addition, Python-Blosc2 aims to leverage the full C-Blosc2 functionality to support super-chunks (SChunk), multi-dimensional arrays (NDArray), metadata, serialization and other bells and whistles introduced in C-Blosc2.

Note: Python-Blosc2 is meant to be backward compatible with Python-Blosc data. That means that it can read data generated with Python-Blosc, but the opposite is not true (i.e. there is no forward compatibility).

SChunk: a 64-bit compressed store

A SChunk is a simple data container that handles setting, expanding and getting data and metadata. Contrarily to chunks, a super-chunk can update and resize the data that it contains, supports user metadata, and it does not have the 2 GB storage limitation.

Additionally, you can convert a SChunk into a contiguous, serialized buffer (aka cframe) and vice-versa; as a bonus, the serialization/deserialization process also works with NumPy arrays and PyTorch/TensorFlow tensors at a blazing speed:

Compression speed for different codecs

Decompression speed for different codecs

while reaching excellent compression ratios:

Compression ratio for different codecs

Also, if you are a Mac M1/M2 owner, make you a favor and use its native arm64 arch (yes, we are distributing Mac arm64 wheels too; you are welcome ;-):

Compression speed for different codecs on Apple M1

Decompression speed for different codecs on Apple M1

Read more about SChunk features in our blog entry at: https://www.blosc.org/posts/python-blosc2-improvements

NDArray: an N-Dimensional store

One of the latest and more exciting additions in Python-Blosc2 is the NDArray object. It can write and read n-dimensional datasets in an extremely efficient way thanks to a n-dim 2-level partitioning, allowing to slice and dice arbitrary large and compressed data in a more fine-grained way:

https://github.com/Blosc/python-blosc2/blob/main/images/b2nd-2level-parts.png?raw=true

To wet you appetite, here it is how the NDArray object performs on getting slices orthogonal to the different axis of a 4-dim dataset:

https://github.com/Blosc/python-blosc2/blob/main/images/Read-Partial-Slices-B2ND.png?raw=true

We have blogged about this: https://www.blosc.org/posts/blosc2-ndim-intro

We also have a ~2 min explanatory video on why slicing in a pineapple-style (aka double partition) is useful:

Slicing a dataset in pineapple-style

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://blosc.org/python-blosc2/python-blosc2.html

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building from sources

python-blosc2 comes with the C-Blosc2 sources with it and can be built in-place:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements-build.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the tests:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/pack_compress.py

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE.txt.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

https://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.

Citing Blosc

You can cite our work on the different libraries under the Blosc umbrella as:

@ONLINE{blosc,
  author = {{Blosc Development Team}},
  title = "{A fast, compressed and persistent data store library}",
  year = {2009-2023},
  note = {https://blosc.org}
}

Enjoy!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-2.5.0.tar.gz (4.7 MB view details)

Uploaded Source

Built Distributions

blosc2-2.5.0-cp312-cp312-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

blosc2-2.5.0-cp312-cp312-win32.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86

blosc2-2.5.0-cp312-cp312-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

blosc2-2.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

blosc2-2.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

blosc2-2.5.0-cp312-cp312-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

blosc2-2.5.0-cp312-cp312-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

blosc2-2.5.0-cp311-cp311-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc2-2.5.0-cp311-cp311-win32.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86

blosc2-2.5.0-cp311-cp311-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

blosc2-2.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc2-2.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

blosc2-2.5.0-cp311-cp311-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

blosc2-2.5.0-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc2-2.5.0-cp310-cp310-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-2.5.0-cp310-cp310-win32.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86

blosc2-2.5.0-cp310-cp310-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc2-2.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-2.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

blosc2-2.5.0-cp310-cp310-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

blosc2-2.5.0-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-2.5.0-cp39-cp39-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-2.5.0-cp39-cp39-win32.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86

blosc2-2.5.0-cp39-cp39-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc2-2.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-2.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc2-2.5.0-cp39-cp39-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

blosc2-2.5.0-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file blosc2-2.5.0.tar.gz.

File metadata

  • Download URL: blosc2-2.5.0.tar.gz
  • Upload date:
  • Size: 4.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.0.tar.gz
Algorithm Hash digest
SHA256 22133ee3b101d9b2e4f922fe4876856dbbe093c99aa7ee4df2bb186502afb6d5
MD5 8ceb0f9b8c632f24a3a693953409de46
BLAKE2b-256 55e86754127df99a3cc6a0025cf54b30d65918ed9ab53c071caabc512d0f3231

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.5.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 76fb57f887ee448b2360239da7e7480f3adb4e32297ab63e5f7dc1b3f236f629
MD5 43c52ff4fcf11dc6465176c9c0b32352
BLAKE2b-256 b03bc5c44dcc724ea8f061d797ea57e2328e0375e6b0cb9d4c0ccab29a5ceb66

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: blosc2-2.5.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 7eab81b1796bb7d0b356217bbf75b528e9bfd28564cbcd10756117f2411b1094
MD5 11edc75e0f861fde9a2c3166eca18370
BLAKE2b-256 ade64eed7be2b5b647d49bd11cfeaf35a3136afc6e78e6aec9b6f7daee683787

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3ec31a66bcfd75a179a2b6ae489ee06fe68ca02a8e4f4e817f567b4e9182ea17
MD5 47b920bc33216581e5f0a01f611d0e7c
BLAKE2b-256 587eef4c349894d209ed79ac43488fc4a5eae6eca6a139c35974a23b2a29f111

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 467dd2a24559cab24266f6d97cc22600489d32c6759e57cca772f4c2c13075fc
MD5 280cc9dae3f35f74c6a96f06f5b3424f
BLAKE2b-256 7d22342b5b576eecf7d988fb0ab20c1e3441224fd6ad7cadb7b6ff8c3c600571

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 754a0163d57fe7f4a723bf857d5cd38765e2cd7679c7c7787431207cacf45f55
MD5 e9fb11391b5ecd5662f51aaf056d00fc
BLAKE2b-256 9437c76c8ec792af0b8b92d6672c0767ed833ddb13e01fe713da984e73d26cd5

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 81c20f8f30017d5bcf3f0abd460edc823505d3b3431f5536bcd52eb5a59a3cd6
MD5 e32ce0d6202d6be55fb6d544f05226c1
BLAKE2b-256 9cd89c2f91b2b130650803752cf4d2eea4c0b1d0703ab41555c9667ecf067c74

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b57782551062a4315e6b36fdd383550bac83f6c5e14a6a2497144fdd38ce1f8
MD5 9b18074e56c706207be2fc297fe65d57
BLAKE2b-256 8b6176783f195631a64152682c6eb94b33c47130874c307ea443744d433889e1

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.5.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ac1a777846c154d03442ff38cee655fc8e961c23756bd5f245436bb611844121
MD5 60ebaf09e0a2933b96151b2c38909038
BLAKE2b-256 2c30a3078339465ca6b8af3dd1c76121bfe39af328e8d763da751871eea573a3

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: blosc2-2.5.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 9ae2ac317ec951a81ad85da6160332f4937671009b2e30737c255337ade03ae1
MD5 4bc61c9ef5fc589baaf761e6f1a6bd2c
BLAKE2b-256 b8b12c037a903af77f9df565034c37bd3987f28eb7a1b398a11e7354d5584fc7

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1636b57b08acf5246a218e2b8158fe36a127f0f80ffdd59cbe24c3ad98fd9724
MD5 ead68792f8cf482a575ba6abd9aafc4e
BLAKE2b-256 1b6ff369f00ac4339a7734d7a8b4ab4c2b671394a26a55fafcd5b97a4b71daa7

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 22fb9b973ee072f93847a2d9c0ebce01af138b0f8287e19d5b5c263292fedfaa
MD5 ea1c0420e99b5506bf89b73cf6a6058d
BLAKE2b-256 fe9e02a269de3259bd0dfad1ca505d6557a9a4d034e3f7f6ad303e87fc8432c3

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a7e4291db52ff464bee24e3265b7a7617327375116cc328258398bd5874eb5e4
MD5 a02a4d7bf04ada8c384795b15b33106c
BLAKE2b-256 a31a8a8e99850b93c7749a731ae74134a1e9096e467b7fe98b68421f5ee0f74e

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a517fad26c0aad121751b51649bfc389b4967417df9df975020cac988bad721f
MD5 32a25fff932c2d6335e21e5a86062caf
BLAKE2b-256 b95abe1dab83a4abad00f9c4ca05c90a6e98b4dcdf70849f6d99fb725940b168

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 67e668665e14808458491bf488a81d99a0920b316328269279f6fb774b7cb1a2
MD5 9103477c09331c396510039d37a19f50
BLAKE2b-256 fd344004381c3124dc8ce827a1825d5173ddb54c6e456859f7bf7c2323fafde5

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.5.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d0157caebef7a4939f05a572e10cf32415ad73514eb0fc80f22dbb8feafc34e5
MD5 5e7b04050395e973c933cc8ae25af829
BLAKE2b-256 d68087b489eb327c89c14f79848fe71fe43b7f5e50adb9bb6ed310dafb683fad

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: blosc2-2.5.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d0c0dd86c94e4a015af3639b6078dd050a2cee1d6a3222686f6750c05de01f2e
MD5 64b3d5af6c9b3c030fcd4811ebacbeb3
BLAKE2b-256 3fa9fda8cc8f8c9bf2747e5d4c5bfc70eeee476660087501a9f07adba5e78e8d

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f246a860ffea3107c6c189aa61e068906349a3e1fcf8713e5136f467d2c2b082
MD5 4b574dc77e137e773db33d2b4e3cf5c0
BLAKE2b-256 f99bffb5aa4ec6ce2b60edecfeb8c35132b9a65c8dcb9083368d74095bb5fef7

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5aa12e52b50a86a0b6dc01d1f55029c251a1939b7691e1b9b487449148545a4a
MD5 c726b33ae0c6ce9d52e160f78cbe5948
BLAKE2b-256 9a51f758835851acfe6c80adfdba929607c99c2b8621e70fb22664ffb2fa058f

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 89d187fa27dc4b708b704bfd0c8f2cd71112ea145f4c481dfefbb31c645d2523
MD5 f863d32e88b63583888fdb091ba3a8d7
BLAKE2b-256 8cfbd228e507e4f3e7ded30024ced972a3f0ce2126c2588b3996d0741b36bca7

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab062bdd120cfcb47f9fe9bc94c3a5d621b260118f63ac1b6d326f75da065e88
MD5 dae9990b981b14ff4486fae310b55b08
BLAKE2b-256 0f0b1c6b06cc38073e570b43cddec2e12cba2b6eee5081acd3d7393a27b1a722

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8d73af9af7b0841ce3d797c00240079ed7ce7831e20233c5bc3e3f06ebe2d029
MD5 9216853ffa3fbdd086b74d687c454b7e
BLAKE2b-256 328be7652d5c10bc0f645a975e7e1c9e6aa4d28c46e48e630f26324c207aec4d

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0ce472e1289742adc06d1e3cf21ed5caddbdc6ed590d3601ce51ac3d7e39ab00
MD5 aa0849940e19859ab74e5884626ed3b5
BLAKE2b-256 8269e4cdccc1e05e899515a7a63b076065c077b5ed035be5e051a63c32d7a8f3

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc2-2.5.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 1761a9f7ed4fc5286d1298b45541b330396472d6490f39cd4e3a0de0e29efba3
MD5 e172a2068007e944a4ecefa44784aa85
BLAKE2b-256 5e4f2cab68004bab21b552f2c77ce021f5a50d99691e1055d3baa9b02aba0fd3

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8fbcdfa3df90619723b30ee89f3bb1c42ef12fe774ce886a86e3d67a5c7d2c2a
MD5 567198c8cd441de3aa945dafacc6f35c
BLAKE2b-256 d01200574566c7de8408d83903feae80e31d3ce3811a56e49ce0e3f4221adb5d

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45b93b0ace9ae8f0a9c4efc4d6a18da364baa520ad3eea2569a1751e748e530a
MD5 b5dcc6d7032f5dadbbda95ea7d35fe4c
BLAKE2b-256 75472f3e75edb2f687bbb9213ae34f1eccc67486996d9ec9574275610ce1b224

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 afdb13f551121828511e9c88503b97ad5a5b651fbb9239546878b2ae7d052478
MD5 c61c37ea810566fc08e5f3da3f296a0c
BLAKE2b-256 f629a5363b201fdc5818fe27d8ad4037617e0ad2bf27f58eded88f7e9e1aabb5

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d748054ab78356598853cf3398821d16696c7e776ecdeb6a28d56ea35064bd92
MD5 a1ec7455d300a9942f72b58b64973608
BLAKE2b-256 e73e4bad7e89e593b4389f4c4f244158fcfe14ac3f92548f6f8eb7273ab9580c

See more details on using hashes here.

File details

Details for the file blosc2-2.5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 20b1d0c3e3da41991f9f9189ecdad6a42523c7e9420125e02aa4b87f007a0d00
MD5 c93e5f34bb5eb1fb2fbde420da1bd9de
BLAKE2b-256 588b7f649a3fef97414fe5de6d43b816fce16e58193c4b56685200bcab804451

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page