Skip to main content

Python wrapper for the C-Blosc2 library

Project description

A Python wrapper for the extremely fast Blosc2 compression library

Author:

The Blosc development team

Contact:

blosc@blosc.org

Github:

https://github.com/Blosc/python-blosc2

Actions:

actions

PyPi:

version

NumFOCUS:

numfocus

Code of Conduct:

Contributor Covenant

What it is

C-Blosc2 is the new major version of C-Blosc, and is backward compatible with both the C-Blosc1 API and its in-memory format. Python-Blosc2 is a Python package that wraps C-Blosc2, the newest version of the Blosc compressor.

Currently Python-Blosc2 already reproduces the API of Python-Blosc, so it can be used as a drop-in replacement. However, there are a few exceptions for a full compatibility.

In addition, Python-Blosc2 aims to leverage the full C-Blosc2 functionality to support super-chunks (SChunk), multi-dimensional arrays (NDArray), metadata, serialization and other bells and whistles introduced in C-Blosc2.

Note: Python-Blosc2 is meant to be backward compatible with Python-Blosc data. That means that it can read data generated with Python-Blosc, but the opposite is not true (i.e. there is no forward compatibility).

SChunk: a 64-bit compressed store

A SChunk is a simple data container that handles setting, expanding and getting data and metadata. Contrarily to chunks, a super-chunk can update and resize the data that it contains, supports user metadata, and it does not have the 2 GB storage limitation.

Additionally, you can convert a SChunk into a contiguous, serialized buffer (aka cframe) and vice-versa; as a bonus, the serialization/deserialization process also works with NumPy arrays and PyTorch/TensorFlow tensors at a blazing speed:

Compression speed for different codecs

Decompression speed for different codecs

while reaching excellent compression ratios:

Compression ratio for different codecs

Also, if you are a Mac M1/M2 owner, make you a favor and use its native arm64 arch (yes, we are distributing Mac arm64 wheels too; you are welcome ;-):

Compression speed for different codecs on Apple M1

Decompression speed for different codecs on Apple M1

Read more about SChunk features in our blog entry at: https://www.blosc.org/posts/python-blosc2-improvements

NDArray: an N-Dimensional store

One of the latest and more exciting additions in Python-Blosc2 is the NDArray object. It can write and read n-dimensional datasets in an extremely efficient way thanks to a n-dim 2-level partitioning, allowing to slice and dice arbitrary large and compressed data in a more fine-grained way:

https://github.com/Blosc/python-blosc2/blob/main/images/b2nd-2level-parts.png?raw=true

To wet you appetite, here it is how the NDArray object performs on getting slices orthogonal to the different axis of a 4-dim dataset:

https://github.com/Blosc/python-blosc2/blob/main/images/Read-Partial-Slices-B2ND.png?raw=true

We have blogged about this: https://www.blosc.org/posts/blosc2-ndim-intro

We also have a ~2 min explanatory video on why slicing in a pineapple-style (aka double partition) is useful:

Slicing a dataset in pineapple-style

Installing

Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip:

pip install blosc2

Documentation

The documentation is here:

https://blosc.org/python-blosc2/python-blosc2.html

Also, some examples are available on:

https://github.com/Blosc/python-blosc2/tree/main/examples

Building from sources

python-blosc2 comes with the C-Blosc2 sources with it and can be built in-place:

git clone https://github.com/Blosc/python-blosc2/
cd python-blosc2
git submodule update --init --recursive
python -m pip install -r requirements-build.txt
python setup.py build_ext --inplace

That’s all. You can proceed with testing section now.

Testing

After compiling, you can quickly check that the package is sane by running the tests:

python -m pip install -r requirements-tests.txt
python -m pytest  (add -v for verbose mode)

Benchmarking

If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:

PYTHONPATH=. python bench/pack_compress.py

License

The software is licenses under a 3-Clause BSD license. A copy of the python-blosc2 license can be found in LICENSE.txt.

Mailing list

Discussion about this module is welcome in the Blosc list:

blosc@googlegroups.com

https://groups.google.es/group/blosc

Twitter

Please follow @Blosc2 to get informed about the latest developments.

Citing Blosc

You can cite our work on the different libraries under the Blosc umbrella as:

@ONLINE{blosc,
  author = {{Blosc Development Team}},
  title = "{A fast, compressed and persistent data store library}",
  year = {2009-2023},
  note = {https://blosc.org}
}

Enjoy!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blosc2-2.5.1.tar.gz (4.7 MB view details)

Uploaded Source

Built Distributions

blosc2-2.5.1-cp312-cp312-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

blosc2-2.5.1-cp312-cp312-win32.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86

blosc2-2.5.1-cp312-cp312-musllinux_1_1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

blosc2-2.5.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

blosc2-2.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

blosc2-2.5.1-cp312-cp312-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

blosc2-2.5.1-cp312-cp312-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

blosc2-2.5.1-cp311-cp311-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

blosc2-2.5.1-cp311-cp311-win32.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86

blosc2-2.5.1-cp311-cp311-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

blosc2-2.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

blosc2-2.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

blosc2-2.5.1-cp311-cp311-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

blosc2-2.5.1-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

blosc2-2.5.1-cp310-cp310-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

blosc2-2.5.1-cp310-cp310-win32.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86

blosc2-2.5.1-cp310-cp310-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

blosc2-2.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

blosc2-2.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

blosc2-2.5.1-cp310-cp310-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

blosc2-2.5.1-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

blosc2-2.5.1-cp39-cp39-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

blosc2-2.5.1-cp39-cp39-win32.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86

blosc2-2.5.1-cp39-cp39-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

blosc2-2.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

blosc2-2.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

blosc2-2.5.1-cp39-cp39-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

blosc2-2.5.1-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file blosc2-2.5.1.tar.gz.

File metadata

  • Download URL: blosc2-2.5.1.tar.gz
  • Upload date:
  • Size: 4.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.1.tar.gz
Algorithm Hash digest
SHA256 47d5df50e7286edf81e629ece35f87f13f55c13c5e8545832188c420c75d1659
MD5 e872fa90b73585c057d0f3e4f8a8bbc1
BLAKE2b-256 f7605bc8601f8ffcd5d8787b346898de8a0b454d031c3e158e3bbc312003984e

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.5.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 585d780c5e85f251dec72b75a47666e4a261dbfe1d228769bca545e9fe07f480
MD5 1f888aec64759f779a1a06e6ee2c040d
BLAKE2b-256 2980871cf959e5e0d3d2a177caf7b9f4b714850a50c33bb5cedd86a95c6e05b2

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: blosc2-2.5.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 5856e57e0e81f9018f1a12e803b9f768fa5533175092d72d165ac60069c7d2ab
MD5 571c2cb995f321d45740d1a87bfaf042
BLAKE2b-256 a1e6e05e987db27986ca8bdaaf442b94212e116a1eb937a8cd35250548704aa6

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 956a63231f1b448803e9b4bc3e704ea424c89fc14418d99093472c74f19c19e1
MD5 4c114faf5179d3b272e9f5c98fda8c95
BLAKE2b-256 7821f1815f711f98c04eba5116d55041b2f64e17e8a9437d7c832d1168ed2fa8

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19f79071a336fcf1eda01cd0171291a4ab82b16cf9a15d2b4d26c010146f13b5
MD5 eced81e9062b27f357f1977cdd0ec7d0
BLAKE2b-256 33bf52c8385aa71ed8c42296016d48c80dcc41dd005e951a83970bde4e6d4ff2

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eb5fcd1775b3884d9825aa51fb45253f45cfa21c77f4135fad5dc5db710c2a34
MD5 3365c81b2f9ef15bda505dcb386fbff7
BLAKE2b-256 928db13ea33ea4d5da344d1170638b2d7b3cc63a921b97f9a8184128fd78aacd

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dd66e60dafcc93d4c1f815d726d76f9fb067ecc9106a6c661010e709135c79ce
MD5 a14b484179e9f64ba8631d0c110b9c1a
BLAKE2b-256 9b219a887c9fdc46a5cfe4aa250eac4ed4f18213bf1996e113c1d1c662e31678

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab849d3adaeb035f2f16cf495cff1792b28d58dfb3de21b9459ee355c6bb8df3
MD5 81b99bb592b53a48a80372c427e9d2b0
BLAKE2b-256 5b4d00824754a3b5b5c6ffb92a043b5122be6202039fc76a25fa913fe0d4e235

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.5.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e7499e277c13334d54f84e74f429f32341f99f7b978deaf9a7c2e963904cb48c
MD5 58f507a4c824de779660d7cef83d0b17
BLAKE2b-256 d1487d4be4e57342ec60c05d11478257b235cf33dc96c31049fb47e6ae98b652

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: blosc2-2.5.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1a3edc3256bad04d3db30c9de7eac3a820f96e741fc754cdabb6a9991e5c37e8
MD5 daa75bfa97fe6d712727077f3a7ac40b
BLAKE2b-256 9f3921d6d1dc00d765f5c1671f8c0b323096f0dde360e8e1d8005160679b4831

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0fd109eef815ea1e50fde4f676388aa2f3bb5543502d125fb63f16ec7a014464
MD5 fb96143b49fb8840abe4b26497292c6e
BLAKE2b-256 8f9b923e29af25f4c34b5b331829a87bc8397b18e8a361551230b70e6b0a785a

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 22f03a723130cf07e4309fe34b1360c868f4376e862f8ff664eb40d019fdd3f6
MD5 c33b40dce0158ed2dc040a6c01b68bca
BLAKE2b-256 2a0035169a0765044be69a3bfb73441ff8b9ea05d92d4660be622bbf90c46913

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 af3cab9c12a4364c643266ee7d9583b526c0f484a291d72ec6efb09ea7ffbbf9
MD5 a01ec9d195bb38b3e9f034b363bc7336
BLAKE2b-256 1726d34d521fc60b164738d986144642c58675bcdc344cc9fbb8c08e58bb11ab

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae2e0c5dc8561a6b17842ee4320b49621434c20e622c9e9f5c67c9c6eb3b06a3
MD5 894ac4255e9b941ad013244e25ab5ff6
BLAKE2b-256 0350b1d2bad6b9f77c3540b511b5dee77f213c8b179e942bbc34f5c410b92ede

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 da826d42d616f8a939f27e1501b40e764fded66bc80177eeaefcebdbf3b3afb8
MD5 33bc41937e618d123107cda20f54d0ef
BLAKE2b-256 c3f425a82b7191109beb0fc20c580f35667a2e86087ebac2f6a9e50469f618d7

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.5.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d5a7ef00b82fbca069e949335f9c92ce7cbe2039a9fa2e2bd4f5f418043d6262
MD5 bbd012bd19c13eecb4a989bcd9ccad01
BLAKE2b-256 67ff0cf994e434b5ae860546cfe6941c58bdcdc27ed10009caffac9a29b66651

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: blosc2-2.5.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 873483bd5c6afb8d139039180ee57b74373232e87b032cb80389fd8bb883ea8e
MD5 5c176ccd990d328be39f324c74412241
BLAKE2b-256 9bcd56150f9367516f039b62923a5cb243771e2a1f440de0232b195f6e79f1ab

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b4dc4f595bf95c350c50bb77a8749cdd08a5dc2bdf3bdb18983d49a52d60b595
MD5 db6ce853144c0c5cfae41f01ea7c3cde
BLAKE2b-256 167dc81b1caa0aded9f3e63c4dbab7a334681ded12ad80a18de34e7199939df5

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5455af77e7e94159bb4966cae554f232ca2d52bb80cd3f878ecef39cf569da2a
MD5 1a798ab4402b49eccb0a7a9afb3ef75a
BLAKE2b-256 a58cd4ab68a40004f93c1fd20dceb1899e54477425542bffa1f5ebab2647956f

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 546fa39f397dd54b13d7c42a4f890afaf16c70fe478712070942d464c440ce03
MD5 86e8086705533b0ffc72e761e2b9d8ee
BLAKE2b-256 327232bbaf583eea51b27c91ddb145de017d970ec0a835ec70e966925b00c9cf

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8f35b5d69a7a41e9d5054297d2540c25f8af5ea3c62e4a80ca7359292d783c04
MD5 80752c18855b69c6b554e578fc97e120
BLAKE2b-256 c08ac7ce322f90750eb7fdde0948e5c6b9c47ed03e276f2481b701f9d2360d3a

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c861262b7fe317c1614a9b59b6c9edf409532b4a6aaf5b2f4ad0d79c6f800b57
MD5 96fc679a0c1baf2a5825dd1c1c0007c5
BLAKE2b-256 b2754511f1f9cea0aad8c5464736720a9de1e762e60e359cde6b7d69186e97b0

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: blosc2-2.5.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 73eb5e569a91fbe67f7dd78efe6a1ca9a54afff2c847db5dfa675bfd6a424f60
MD5 a02aa95cb1f2dfe87fbcff2f6a880cfa
BLAKE2b-256 5cc1f80115c66a181e2ff18027818d3e1f37a3d5133b350b3e25189e53e28cd8

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: blosc2-2.5.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for blosc2-2.5.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4315ae8d467fe91efa0dbe22004e967008f5fe021ebb3945518f5213d7c4511f
MD5 7031dbda066e3bf7c755a3510cd2218f
BLAKE2b-256 b57c6a7d46a6094a100e1bdfba7e1df584971efea00732006fdddcf0320d4846

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7afe59d35d93bf8da7db8de43f4d8aef277514de43953c1e5e416ca839b9023a
MD5 881ad4963b032a1055e3d755b98d9519
BLAKE2b-256 6288a185ab2a50b930011396b601ae8e82e83dfa24597e5f1fd91f483f178a94

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b473472b977b770aab3bf20d0feeee84ecd5bb8b15a675287e090ce818c1cd40
MD5 472b7b4d1b15d5a787a39373a917858a
BLAKE2b-256 a6e2a1367ad174006e5625a1c8ef1b526fc135adc6f546bfc46264ac8e508ebe

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cf6efecc1a22da26c73ff5c60d0dc086db1e7edcceb6b360dd193cda893bef28
MD5 fda4469815b2b35f698c16cd438f863c
BLAKE2b-256 65c40c9740c4f5efb7adde87ed8b5af88c171a3ec007df912cc2fbfb2736963d

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3def4650faa1db43143d821228ef58797108cc95d6698c4b1581909cc2b149ca
MD5 aeef51196dc71e0954ffcf57758253ac
BLAKE2b-256 07cbe97de5b2c40b6c2106d5b68c1d823707a16386fc08781a6c7c609000866e

See more details on using hashes here.

File details

Details for the file blosc2-2.5.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for blosc2-2.5.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0cb9a6ac1abc466c12bdc90052f17545512de8f854e672a1ea4d2b40292323f5
MD5 7165609e14e637e164d587822b125d43
BLAKE2b-256 c94b799dcec670a1d511d11a40e919241c26a273cfd2305a4f3fe7444c39758a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page