Skip to main content

Blue Brain Python E-Model Building Library

Project description

Latest Release

latest release

Documentation

latest documentation

License

license

Build Status

CI

Coverage

coverage

Citation

zenodo

Introduction

The Blue Brain Python E-Model Building Library (BluePyEModel) is a Python package facilitating the configuration and execution of electrical neuron model (e-model) building tasks. It covers tasks such as extraction of electrical features from electrophysiology data, e-model parameters optimisation and model validation. As such, it builds on top of eFEL, BluePyEfe and BluePyOpt.

For a general overview and example of electrical model building, please refer to the preprint: A universal workflow for creation, validation and generalization of detailed neuronal models.

Note that this package only covers e-model building based on patch-clamp data and that it relies solely on the NEURON simulator.

Citation

When you use the BluePyEModel software or method for your research, we ask you to cite the following publication (this includes poster presentations):

@software{bluepyemodel_zenodo,
  author       = {Damart, Tanguy and Jaquier, Aurélien and Arnaudon, Alexis and Mandge, Darshan and Van Geit, Werner and Kilic, Ilkan},
  title        = {BluePyEModel},
  month        = aug,
  year         = 2023,
  publisher    = {Zenodo},
  doi          = {8283490},
  url          = {https://doi.org/10.5281/zenodo.8283490}
}

Installation

BluePyEModel can be pip installed with the following command:

pip install bluepyemodel[all]

If you do not wish to install all dependencies, specific dependencies can be selected by indicating which ones to install between brackets in place of ‘all’ (If you want multiple dependencies, they have to be separated by commas). The available dependencies are:

  • luigi

  • all

To get started with the E-Model building pipeline

E-Model building pipeline

This section presents a general picture of the pipeline. For a detailed picture and how to use it, please refer to the example directory ./examples/emodel_pipeline_local_python and its README.

The pipeline is divided in 6 steps:

  • extraction: extracts e-features from ephys recordings and averages the results e-feature values along the requested targets.

  • optimisation: builds a NEURON cell model and optimises its parameters using as targets the efeatures computed during e-feature extraction.

  • storage of the model: reads the results of the extraction and stores the models (best set of parameters) in a local json file.

  • validation: reads the models and runs the optimisation protocols and/or validation protocols on them. The e-feature scores obtained on these protocols are then passed to a validation function that decides if the model is good enough.

  • plotting: reads the models and runs the optimisation protocols and/or validation protocols on them. Then, plots the resulting traces along the e-feature scores and parameter distributions.

  • exporting: read the parameter of the best models and export them in files that can be used either in NEURON or for circuit building.

These six steps are to be run in order as for example validation cannot be run if no models have been stored. Steps “validation”, “plotting” and “exporting” are optional. Step “extraction” can also be optional in the case where the file containing the protocols and optimisation targets is created by hand or if it is obtained from an older project.

Schematics of BluePyEModel classes

Schematics of BluePyEModel classes

Acknowledgment

This work has been partially funded by the European Union Seventh Framework Program (FP7/2007­2013) under grant agreement no. 604102 (HBP), and by the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreements No. 720270 (Human Brain Project SGA1) and No. 785907 (Human Brain Project SGA2) and by the EBRAINS research infrastructure, funded from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bluepyemodel-0.0.16.tar.gz (122.6 kB view details)

Uploaded Source

Built Distribution

bluepyemodel-0.0.16-py3-none-any.whl (195.0 kB view details)

Uploaded Python 3

File details

Details for the file bluepyemodel-0.0.16.tar.gz.

File metadata

  • Download URL: bluepyemodel-0.0.16.tar.gz
  • Upload date:
  • Size: 122.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for bluepyemodel-0.0.16.tar.gz
Algorithm Hash digest
SHA256 d12f3fd09a1ad662597bc8dd080fab584d4de736e424de4678fab67d57e339ff
MD5 51dbc96c2b8180a3a10405b90be15457
BLAKE2b-256 4ebfb26fd0e56561c6d04a5b8ddc69939b8302f33583126137055fa6e7a93a0a

See more details on using hashes here.

File details

Details for the file bluepyemodel-0.0.16-py3-none-any.whl.

File metadata

File hashes

Hashes for bluepyemodel-0.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 c4bfc6b0c8533183dd4ac6a576a349f3fb2ce5646a3f2e48c4cbe43f4a0d83fe
MD5 b8e7ad39332f81cd949bb50401c82f3b
BLAKE2b-256 77ae9e95ea0862330f97262af1bbd4317f66be2f17c82edf0a0c990552195635

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page