Skip to main content

Blue Brain Python E-Model Building Library

Project description

Latest Release

latest release

Documentation

latest documentation

License

license

Build Status

CI

Coverage

coverage

Citation

zenodo

Introduction

The Blue Brain Python E-Model Building Library (BluePyEModel) is a Python package facilitating the configuration and execution of electrical neuron model (e-model) building tasks. It covers tasks such as extraction of electrical features from electrophysiology data, e-model parameters optimisation and model validation. As such, it builds on top of eFEL, BluePyEfe and BluePyOpt.

For a general overview and example of electrical model building, please refer to the preprint: A universal workflow for creation, validation and generalization of detailed neuronal models.

Note that this package only covers e-model building based on patch-clamp data and that it relies solely on the NEURON simulator.

Citation

When you use the BluePyEModel software or method for your research, we ask you to cite the following publication (this includes poster presentations):

@software{bluepyemodel_zenodo,
  author       = {Damart, Tanguy and Jaquier, Aurélien and Arnaudon, Alexis and Mandge, Darshan and Van Geit, Werner and Kilic, Ilkan},
  title        = {BluePyEModel},
  month        = aug,
  year         = 2023,
  publisher    = {Zenodo},
  doi          = {8283490},
  url          = {https://doi.org/10.5281/zenodo.8283490}
}

Installation

BluePyEModel can be pip installed with the following command:

pip install bluepyemodel[all]

If you do not wish to install all dependencies, specific dependencies can be selected by indicating which ones to install between brackets in place of ‘all’ (If you want multiple dependencies, they have to be separated by commas). The available dependencies are:

  • luigi

  • all

To get started with the E-Model building pipeline

E-Model building pipeline

This section presents a general picture of the pipeline. For a detailed picture and how to use it, please refer to the example directory ./examples/emodel_pipeline_local_python and its README.

The pipeline is divided in 6 steps:

  • extraction: extracts e-features from ephys recordings and averages the results e-feature values along the requested targets.

  • optimisation: builds a NEURON cell model and optimises its parameters using as targets the efeatures computed during e-feature extraction.

  • storage of the model: reads the results of the extraction and stores the models (best set of parameters) in a local json file.

  • validation: reads the models and runs the optimisation protocols and/or validation protocols on them. The e-feature scores obtained on these protocols are then passed to a validation function that decides if the model is good enough.

  • plotting: reads the models and runs the optimisation protocols and/or validation protocols on them. Then, plots the resulting traces along the e-feature scores and parameter distributions.

  • exporting: read the parameter of the best models and export them in files that can be used either in NEURON or for circuit building.

These six steps are to be run in order as for example validation cannot be run if no models have been stored. Steps “validation”, “plotting” and “exporting” are optional. Step “extraction” can also be optional in the case where the file containing the protocols and optimisation targets is created by hand or if it is obtained from an older project.

Schematics of BluePyEModel classes

Schematics of BluePyEModel classes

Acknowledgment

This work has been partially funded by the European Union Seventh Framework Program (FP7/2007­2013) under grant agreement no. 604102 (HBP), and by the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreements No. 720270 (Human Brain Project SGA1) and No. 785907 (Human Brain Project SGA2) and by the EBRAINS research infrastructure, funded from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bluepyemodel-0.0.18.tar.gz (15.0 MB view details)

Uploaded Source

Built Distribution

bluepyemodel-0.0.18-py3-none-any.whl (12.4 MB view details)

Uploaded Python 3

File details

Details for the file bluepyemodel-0.0.18.tar.gz.

File metadata

  • Download URL: bluepyemodel-0.0.18.tar.gz
  • Upload date:
  • Size: 15.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for bluepyemodel-0.0.18.tar.gz
Algorithm Hash digest
SHA256 ddeea771373b442d64d905625d6c6eddadd0a66188a09c466fcb8776fe0a1773
MD5 769c4789a4961186e9b0d05a4a925c92
BLAKE2b-256 5834fca8686338c71cdf9ae391bc57b1eb3341da48772a46ee3846cf0a41855a

See more details on using hashes here.

File details

Details for the file bluepyemodel-0.0.18-py3-none-any.whl.

File metadata

File hashes

Hashes for bluepyemodel-0.0.18-py3-none-any.whl
Algorithm Hash digest
SHA256 baf11bf5c9966d4d0bf8e41bac81189e4e66789e9f472bf646e2d721ac1c0e01
MD5 2e9531f564c38ea854537df84927bb59
BLAKE2b-256 397950fdd248bf2de3de8032fccc0996fb829a2a664b95b974e05e165b28833a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page