Skip to main content

Blue Brain Python E-Model Building Library

Project description

Latest Release

latest release

Documentation

latest documentation

License

license

Build Status

CI

Coverage

coverage

Citation

zenodo

Introduction

The Blue Brain Python E-Model Building Library (BluePyEModel) is a Python package facilitating the configuration and execution of electrical neuron model (e-model) building tasks. It covers tasks such as extraction of electrical features from electrophysiology data, e-model parameters optimisation and model validation. As such, it builds on top of eFEL, BluePyEfe and BluePyOpt.

For a general overview and example of electrical model building, please refer to the preprint: A universal workflow for creation, validation and generalization of detailed neuronal models.

Note that this package only covers e-model building based on patch-clamp data and that it relies solely on the NEURON simulator.

Citation

When you use the BluePyEModel software or method for your research, we ask you to cite the following publication (this includes poster presentations):

@software{bluepyemodel_zenodo,
  author       = {Damart, Tanguy and Jaquier, Aurélien and Arnaudon, Alexis and Mandge, Darshan and Van Geit, Werner and Kilic, Ilkan},
  title        = {BluePyEModel},
  month        = aug,
  year         = 2023,
  publisher    = {Zenodo},
  doi          = {8283490},
  url          = {https://doi.org/10.5281/zenodo.8283490}
}

Installation

BluePyEModel can be pip installed with the following command:

pip install bluepyemodel[all]

If you do not wish to install all dependencies, specific dependencies can be selected by indicating which ones to install between brackets in place of ‘all’ (If you want multiple dependencies, they have to be separated by commas). The available dependencies are:

  • luigi

  • all

To get started with the E-Model building pipeline

E-Model building pipeline

This section presents a general picture of the pipeline. For a detailed picture and how to use it, please refer to the example directory and its README.

The pipeline is divided in 6 steps:

  • extraction: extracts e-features from ephys recordings and averages the results e-feature values along the requested targets.

  • optimisation: builds a NEURON cell model and optimises its parameters using as targets the efeatures computed during e-feature extraction.

  • storage of the model: reads the results of the extraction and stores the models (best set of parameters) in a local json file.

  • validation: reads the models and runs the optimisation protocols and/or validation protocols on them. The e-feature scores obtained on these protocols are then passed to a validation function that decides if the model is good enough.

  • plotting: reads the models and runs the optimisation protocols and/or validation protocols on them. Then, plots the resulting traces along the e-feature scores and parameter distributions.

  • exporting: read the parameter of the best models and export them in files that can be used either in NEURON or for circuit building.

These six steps are to be run in order as for example validation cannot be run if no models have been stored. Steps “validation”, “plotting” and “exporting” are optional. Step “extraction” can also be optional in the case where the file containing the protocols and optimisation targets is created by hand or if it is obtained from an older project.

Schematics of BluePyEModel classes

Schematics of BluePyEModel classes

Acknowledgment

This work has been partially funded by the European Union Seventh Framework Program (FP7/2007­2013) under grant agreement no. 604102 (HBP), and by the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreements No. 720270 (Human Brain Project SGA1) and No. 785907 (Human Brain Project SGA2) and by the EBRAINS research infrastructure, funded from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bluepyemodel-0.0.27.tar.gz (15.0 MB view details)

Uploaded Source

Built Distribution

bluepyemodel-0.0.27-py3-none-any.whl (12.4 MB view details)

Uploaded Python 3

File details

Details for the file bluepyemodel-0.0.27.tar.gz.

File metadata

  • Download URL: bluepyemodel-0.0.27.tar.gz
  • Upload date:
  • Size: 15.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for bluepyemodel-0.0.27.tar.gz
Algorithm Hash digest
SHA256 36c6e3de33489c6f8d1f2585f6ef1cc2009e07d6bc5301bb0ba874e2ca37ba07
MD5 f4eb6bb103b410cddc81eadfabe81674
BLAKE2b-256 e5e0387947122ad18853f07219307918ed734e94736cb78e6da4b6f63a2cc416

See more details on using hashes here.

File details

Details for the file bluepyemodel-0.0.27-py3-none-any.whl.

File metadata

File hashes

Hashes for bluepyemodel-0.0.27-py3-none-any.whl
Algorithm Hash digest
SHA256 6e2a78d4556185496dec1193342992de1308d13482089c66c033f4cbbbab5c16
MD5 a8e754745d23df52747313eadf38a4f3
BLAKE2b-256 8db23964e8133c8b5eb9c40b61af580fa6fd3e0e61f89e6337ca65ab3bec6405

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page