Skip to main content

Python bindings to the flandmark keypoint localization library

Project description

http://img.shields.io/badge/docs-stable-yellow.png http://img.shields.io/badge/docs-latest-orange.png https://travis-ci.org/bioidiap/bob.ip.flandmark.svg?branch=v2.0.1 https://coveralls.io/repos/bioidiap/bob.ip.flandmark/badge.png https://img.shields.io/badge/github-master-0000c0.png http://img.shields.io/pypi/v/bob.ip.flandmark.png http://img.shields.io/pypi/dm/bob.ip.flandmark.png

Python Bindings to Flandmark

This package is a simple Python wrapper to the (rather quick) open-source facial landmark detector Flandmark, version 1.0.7 (or the github state as of 10/february/2013). If you use this package, the author asks you to cite the following paper:

@inproceedings{Uricar-Franc-Hlavac-VISAPP-2012,
  author =      {U\v{r}i\v{c}\'a\v{r}, Michal and Franc, Vojt\v{e}ch and Hlav\'a\v{c}, V\'{a}clav},
  title =       {Detector of Facial Landmarks Learned by the Structured Output {SVM}},
  year =        {2012},
  pages =       {547-556},
  booktitle =   {VISAPP '12: Proceedings of the 7th International Conference on Computer Vision Theory and Applications},
  editor =      {Csurka, Gabriela and Braz, Jos{\'{e}}},
  publisher =   {SciTePress --- Science and Technology Publications},
  address =     {Portugal},
  volume =      {1},
  isbn =        {978-989-8565-03-7},
  book_pages =  {747},
  month =       {February},
  day =         {24-26},
  venue =       {Rome, Italy},
  keywords =    {Facial Landmark Detection, Structured Output Classification, Support Vector Machines, Deformable Part Models},
  prestige =    {important},
  authorship =  {50-40-10},
  status =      {published},
  project =     {FP7-ICT-247525 HUMAVIPS, PERG04-GA-2008-239455 SEMISOL, Czech Ministry of Education project 1M0567},
  www = {http://www.visapp.visigrapp.org},
}

You should also cite Bob, as a core framework, in which these bindings are based on:

@inproceedings{Anjos_ACMMM_2012,
  author = {Anjos, Andr\'e AND El Shafey, Laurent AND Wallace, Roy AND G\"unther, Manuel AND McCool, Christopher AND Marcel, S\'ebastien},
  title = {Bob: a free signal processing and machine learning toolbox for researchers},
  year = {2012},
  month = oct,
  booktitle = {20th ACM Conference on Multimedia Systems (ACMMM), Nara, Japan},
  publisher = {ACM Press},
  url = {http://publications.idiap.ch/downloads/papers/2012/Anjos_Bob_ACMMM12.pdf},
}

Installation

To install this package – alone or together with other Packages of Bob – please read the Installation Instructions. For Bob to be able to work properly, some dependent packages are required to be installed. Please make sure that you have read the Dependencies for your operating system.

Documentation

For further documentation on this package, please read the Stable Version or the Latest Version of the documentation. For a list of tutorials on this or the other packages ob Bob, or information on submitting issues, asking questions and starting discussions, please visit its website.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bob.ip.flandmark-2.0.1.zip (2.2 MB view details)

Uploaded Source

File details

Details for the file bob.ip.flandmark-2.0.1.zip.

File metadata

File hashes

Hashes for bob.ip.flandmark-2.0.1.zip
Algorithm Hash digest
SHA256 516bfed7d21c8e8ae75addc909a0eac3924cba12d665e16289b846b9f9f42a81
MD5 d7636d86672b3417fab67a3bd5ba4abb
BLAKE2b-256 bf5c3c08b8942bbf4e2835ca1adfeea62303893285a98309639d15f0e518224c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page