Statistical and novel interactive HTML plots for Python
Project description
Bokeh
=====
Bokeh is a Python interactive visualization library for large datasets that natively uses the latest web technologies. Its goal is to provide elegant, concise construction of novel graphics in the style of Protovis/D3, while delivering high-performance interactivity over large data to thin clients.
Please visit the [Bokeh web page](http://bokeh.pydata.org) for more information.
To get started quickly, follow the [Quickstart](http://bokeh.pydata.org/quickstart.html) in the online documentation, or the QUICKSTART.md located in the top level of the bokeh repository.
Be sure to follow us on Twitter [@bokehplots](http://twitter.com/BokehPlots)!
Interactive gallery
===================
<p>
<table cellspacing="20">
<tr>
<td><a href="http://continuumio.github.io/bokehjs/image.html"><img src="http://bokeh.pydata.org/_images/image_plot1.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/anscombe.html"><img src="http://bokeh.pydata.org/_images/anscombe2.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/correlation.html"><img src="http://bokeh.pydata.org/_images/stocks3.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/lorenz_example.html"><img src="http://bokeh.pydata.org/_images/lorenz2.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/candlestick.html"><img src="http://bokeh.pydata.org/_images/candlestick2.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/color_scatter_example.html"><img src="http://bokeh.pydata.org/_images/scatter.png"/></a></td>
</tr><tr>
<td><a href="http://continuumio.github.io/bokehjs/map_overlay.html"><img src="http://bokeh.pydata.org/_images/map_overlay1.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/iris.html"><img src="http://bokeh.pydata.org/_images/iris2.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/texas_example.html"><img src="http://bokeh.pydata.org/_images/choropleth2.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/iris_splom.html"><img src="http://bokeh.pydata.org/_images/splom2.png"/></a></td>
<td><a href="http://continuumio.github.io/bokehjs/image.html"><img src="http://bokeh.pydata.org/_images/image_plot2.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/vector_example.html"><img src="http://bokeh.pydata.org/_images/streamline.png"/></a></td>
</tr>
</table>
</p>
=====
Bokeh is a Python interactive visualization library for large datasets that natively uses the latest web technologies. Its goal is to provide elegant, concise construction of novel graphics in the style of Protovis/D3, while delivering high-performance interactivity over large data to thin clients.
Please visit the [Bokeh web page](http://bokeh.pydata.org) for more information.
To get started quickly, follow the [Quickstart](http://bokeh.pydata.org/quickstart.html) in the online documentation, or the QUICKSTART.md located in the top level of the bokeh repository.
Be sure to follow us on Twitter [@bokehplots](http://twitter.com/BokehPlots)!
Interactive gallery
===================
<p>
<table cellspacing="20">
<tr>
<td><a href="http://continuumio.github.io/bokehjs/image.html"><img src="http://bokeh.pydata.org/_images/image_plot1.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/anscombe.html"><img src="http://bokeh.pydata.org/_images/anscombe2.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/correlation.html"><img src="http://bokeh.pydata.org/_images/stocks3.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/lorenz_example.html"><img src="http://bokeh.pydata.org/_images/lorenz2.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/candlestick.html"><img src="http://bokeh.pydata.org/_images/candlestick2.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/color_scatter_example.html"><img src="http://bokeh.pydata.org/_images/scatter.png"/></a></td>
</tr><tr>
<td><a href="http://continuumio.github.io/bokehjs/map_overlay.html"><img src="http://bokeh.pydata.org/_images/map_overlay1.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/iris.html"><img src="http://bokeh.pydata.org/_images/iris2.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/texas_example.html"><img src="http://bokeh.pydata.org/_images/choropleth2.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/iris_splom.html"><img src="http://bokeh.pydata.org/_images/splom2.png"/></a></td>
<td><a href="http://continuumio.github.io/bokehjs/image.html"><img src="http://bokeh.pydata.org/_images/image_plot2.png"/></a></td>
<td><a href="http://bokeh.pydata.org/plot_gallery/vector_example.html"><img src="http://bokeh.pydata.org/_images/streamline.png"/></a></td>
</tr>
</table>
</p>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
bokeh-0.4.1.tar.gz
(27.8 MB
view details)
File details
Details for the file bokeh-0.4.1.tar.gz
.
File metadata
- Download URL: bokeh-0.4.1.tar.gz
- Upload date:
- Size: 27.8 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 141a1c3266f25b4761f78950cd14b7f982414b3bac9dc9e4698b4d7fd163d346 |
|
MD5 | c7b912d281c8e9b5a28f1edac219ed0c |
|
BLAKE2b-256 | cbb8274dd0f01c9a97ca250c3a1f6abdd2b4714e0f88a05a4e8c16ab32c2eb53 |