Skip to main content

The Boost::Histogram Python wrapper.

Project description

boost-histogram logo

boost-histogram for Python

Gitter Stack Overflow Actions Status Documentation Status DOI Code style: black PyPI version Conda-Forge Scikit-HEP Travis-CI

Python bindings for Boost::Histogram (source), a C++14 library. This is of the fastest libraries for histogramming, while still providing the power of a full histogram object. See what's new.

Installation

You can install this library from PyPI with pip:

python -m pip install boost-histogram

or you can use Conda through conda-forge:

conda install -c conda-forge boost-histogram

All the normal best-practices for Python apply; you should be in a virtual environment, etc.

Usage

import boost_histogram as bh

# Compose axis however you like; this is a 2D histogram
hist = bh.Histogram(
    bh.axis.Regular(2, 0, 1),
    bh.axis.Regular(4, 0.0, 1.0),
)

# Filling can be done with arrays, one per dimension
hist.fill(
    [0.3, 0.5, 0.2], [0.1, 0.4, 0.9]
)

# Numpy array view into histogram counts, no overflow bins
counts = hist.view()

Features

  • Many axis types (all support metadata=...)
    • bh.axis.Regular(n, start, stop, ...): Make a regular axis. Options listed below.
      • overflow=False: Turn off overflow bin
      • underflow=False: Turn off underflow bin
      • growth=True: Turn on growing axis, bins added when out-of-range items added
      • circular=True: Turn on wrapping, so that out-of-range values wrap around into the axis
      • transform=bh.axis.transform.Log: Log spacing
      • transform=bh.axis.transform.Sqrt: Square root spacing
      • transform=bh.axis.transform.Pow(v): Power spacing
      • See also the flexible Function transform
    • bh.axis.Integer(start, stop, underflow=True, overflow=True, growth=False): Special high-speed version of regular for evenly spaced bins of width 1
    • bh.axis.Variable([start, edge1, edge2, ..., stop], underflow=True, overflow=True): Uneven bin spacing
    • bh.axis.Category([...], growth=False): Integer or string categories
    • bh.axis.Boolean(): A True/False axis (known issue with slicing/selection in 0.8.0)
  • Axis features:
    • .index(value): The index at a point (or points) on the axis
    • .value(index): The value for a fractional bin (or bins) in the axis
    • .bin(i): The bin edges (continuous axis) or a bin value (discrete axis)
    • .centers: The N bin centers (if continuous)
    • .edges: The N+1 bin edges (if continuous)
    • .extent: The number of bins (including under/overflow)
    • .metadata: Anything a user wants to store
    • .options: The options set on the axis (bh.axis.options)
    • .size: The number of bins (not including under/overflow)
    • .widths: The N bin widths
  • Many storage types
    • bh.storage.Double(): Doubles for weighted values (default)
    • bh.storage.Int64(): 64-bit unsigned integers
    • bh.storage.Unlimited(): Starts small, but can go up to unlimited precision ints or doubles.
    • bh.storage.AtomicInt64(): Threadsafe filling, experimental. Does not support growing axis in threads.
    • bh.storage.Weight(): Stores a weight and sum of weights squared.
    • bh.storage.Mean(): Accepts a sample and computes the mean of the samples (profile).
    • bh.storage.WeightedMean(): Accepts a sample and a weight. It computes the weighted mean of the samples.
  • Accumulators
    • bh.accumulator.Sum: High accuracy sum (Neumaier) - used by the sum method when summing a numerical histogram
    • bh.accumulator.WeightedSum: Tracks a weighted sum and variance
    • bh.accumulator.Mean: Running count, mean, and variance (Welfords's incremental algorithm)
    • bh.accumulator.WeightedMean: Tracks a weighted sum, mean, and variance (West's incremental algorithm)
  • Histogram operations
    • h.ndim: The number of dimensions
    • h.size or len(h): The number of bins
    • +: Add two histograms (storages must match types currently)
    • *=: Multiply by a scaler (not all storages) (hist * scalar and scalar * hist supported too)
    • /=: Divide by a scaler (not all storages) (hist / scalar supported too)
    • .sum(flow=False): The total count of all bins
    • .project(ax1, ax2, ...): Project down to listed axis (numbers)
    • .to_numpy(flow=False): Convert to a Numpy style tuple (with or without under/overflow bins)
    • .view(flow=False): Get a view on the bin contents (with or without under/overflow bins)
    • .reset(): Set counters to 0
    • .empty(flow=False): Check to see if the histogram is empty (can check flow bins too if asked)
    • .copy(deep=False): Make a copy of a histogram
    • .axes: Get the axes as a tuple-like (all properties of axes are available too)
      • .axes[0]: Get the 0th axis
      • .axes.edges: The lower values as a broadcasting-ready array
      • .axes.centers: The centers of the bins broadcasting-ready array
      • .axes.widths: The bin widths as a broadcasting-ready array
      • .axes.metadata: A tuple of the axes metadata
      • .axes.size: A tuple of the axes sizes (size without flow)
      • .axes.extent: A tuple of the axes extents (size with flow)
      • .axes.bin(*args): Returns the bin edges as a tuple of pairs (continuous axis) or values (describe)
      • .axes.index(*args): Returns the bin index at a value for each axis
      • .axes.value(*args): Returns the bin value at an index for each axis
  • Indexing - Supports the Unified Histogram Indexing (UHI) proposal
    • Bin content access / setting
      • v = h[b]: Access bin content by index number
      • v = h[{0:b}]: All actions can be represented by axis:item dictionary instead of by position (mostly useful for slicing)
    • Slicing to get histogram or set array of values
      • h2 = h[a:b]: Access a slice of a histogram, cut portions go to flow bins if present
      • h2 = h[:, ...]: Using : and ... supported just like Numpy
      • h2 = h[::sum]: Third item in slice is the "action"
      • h[...] = array: Set the bin contents, either include or omit flow bins
    • Special accessors
      • bh.loc(v): Supply value in axis coordinates instead of bin number
      • bh.underflow: The underflow bin (use empty beginning on slice for slicing instead)
      • bh.overflow: The overflow bin (use empty end on slice for slicing instead)
    • Special actions (third item in slice)
      • sum: Remove axes via projection; if limits are given, use those
      • bh.rebin(n): Rebin an axis
  • NumPy compatibility
    • bh.numpy provides faster drop in replacements for NumPy histogram functions
    • Histograms follow the buffer interface, and provide .view()
    • Histograms can be converted to NumPy style output tuple with .to_numpy()
  • Details
    • Use bh.Histogram(..., storage=...) to make a histogram (there are several different types)
    • All objects support copy/deepcopy/pickle

Supported platforms

Binaries available:

The easiest way to get boost-histogram is to use a binary wheel, which happens when you run:

python -m pip install boost-histogram

These are the supported platforms for which wheels are produced using cibuildwheel:

System Arch Python versions
ManyLinux1 (custom GCC 9.2) 32 & 64-bit 2.7, 3.5, 3.6, 3.7, 3.8
ManyLinux2010 32 & 64-bit 2.7, 3.5, 3.6, 3.7, 3.8
macOS 10.9+ 64-bit 2.7, 3.5, 3.6, 3.7, 3.8
Windows 32 & 64-bit 2.7, 3.5, 3.6, 3.7, 3.8
  • manylinux1: Using a custom docker container with GCC 9.2; should work but can't be called directly other compiled extensions unless they do the same thing (think that's the main caveat). Supporting 32 bits because it's there.
  • manylinux2010: Requires pip 10+ and a version of Linux newer than 2010.
  • Windows: PyBind11 requires compilation with a newer copy of Visual Studio than Python 2.7's Visual Studio 2008; you need to have the Visual Studio 2015 distributable installed (the dll is included in 2017 and 2019, as well).

If you are on a Linux system that is not part of the "many" in manylinux, such as Alpine or ClearLinux, building from source is usually fine, since the compilers on those systems are often quite new. It will just take a little longer to install when it's using the sdist instead of a wheel.

Conda-Forge

The boost-histogram package is available on Conda-Forge, as well. All supported versions are available with the exception of Python 2.7, which is no longer supported by conda-forge directly. If you really need boost-histogram + Conda + Python 2.7, please open an issue.

conda install -c conda-forge boost-histogram

Source builds

For a source build, for example from an "sdist" package, the only requirements are a C++14 compatible compiler. The compiler requirements are dictated by Boost.Histogram's C++ requirements: gcc >= 5.5, clang >= 3.8, msvc >= 14.1. You should have a version of pip less than 2-3 years old (10+).

If you are using Python 2.7 on Windows, you will need to use a recent version of Visual studio and force distutils to use it, or just upgrade to Python 3.6 or newer. Check the PyBind11 documentation for more help. On some Linux systems, you may need to use a newer compiler than the one your distribution ships with.

Numpy is downloaded during the build (enables multithreaded builds). Boost is not required or needed (this only depends on included header-only dependencies).This library is under active development; you can install directly from GitHub if you would like.

python -m pip install git+https://github.com/scikit-hep/boost-histogram.git@develop

Developing

See CONTRIBUTING.md for details on how to set up a development environment.

Contributors

We would like to acknowledge the contributors that made this project possible (emoji key):


Henry Schreiner

🚧 💻 📖

Hans Dembinski

🚧 💻

N!no

⚠️ 📖

Jim Pivarski

🤔

Nicholas Smith

🐛

physicscitizen

🐛

Chanchal Kumar Maji

📖

Doug Davis

🐛

Pierre Grimaud

📖

Beojan Stanislaus

🐛

Popinaodude

🐛

Congqiao Li

🐛

alexander-held

🐛

This project follows the all-contributors specification.

Talks and other documentation/tutorial sources

The official documentation is here, and includes a quickstart.


Acknowledgements

This library was primarily developed by Henry Schreiner and Hans Dembinski.

Support for this work was provided by the National Science Foundation cooperative agreement OAC-1836650 (IRIS-HEP) and OAC-1450377 (DIANA/HEP). Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

boost-histogram-0.10.2.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

boost_histogram-0.10.2-cp38-cp38-win_amd64.whl (683.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

boost_histogram-0.10.2-cp38-cp38-win32.whl (553.2 kB view details)

Uploaded CPython 3.8 Windows x86

boost_histogram-0.10.2-cp38-cp38-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

boost_histogram-0.10.2-cp38-cp38-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

boost_histogram-0.10.2-cp38-cp38-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.8

boost_histogram-0.10.2-cp38-cp38-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

boost_histogram-0.10.2-cp37-cp37m-win_amd64.whl (661.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

boost_histogram-0.10.2-cp37-cp37m-win32.whl (559.1 kB view details)

Uploaded CPython 3.7m Windows x86

boost_histogram-0.10.2-cp37-cp37m-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

boost_histogram-0.10.2-cp37-cp37m-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

boost_histogram-0.10.2-cp37-cp37m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.7m

boost_histogram-0.10.2-cp37-cp37m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

boost_histogram-0.10.2-cp36-cp36m-win_amd64.whl (661.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

boost_histogram-0.10.2-cp36-cp36m-win32.whl (558.8 kB view details)

Uploaded CPython 3.6m Windows x86

boost_histogram-0.10.2-cp36-cp36m-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

boost_histogram-0.10.2-cp36-cp36m-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

boost_histogram-0.10.2-cp36-cp36m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.6m

boost_histogram-0.10.2-cp36-cp36m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

boost_histogram-0.10.2-cp35-cp35m-win_amd64.whl (661.4 kB view details)

Uploaded CPython 3.5m Windows x86-64

boost_histogram-0.10.2-cp35-cp35m-win32.whl (558.8 kB view details)

Uploaded CPython 3.5m Windows x86

boost_histogram-0.10.2-cp35-cp35m-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

boost_histogram-0.10.2-cp35-cp35m-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

boost_histogram-0.10.2-cp35-cp35m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.5m

boost_histogram-0.10.2-cp35-cp35m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

boost_histogram-0.10.2-cp27-cp27mu-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

boost_histogram-0.10.2-cp27-cp27mu-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

boost_histogram-0.10.2-cp27-cp27mu-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 2.7mu

boost_histogram-0.10.2-cp27-cp27m-win_amd64.whl (719.6 kB view details)

Uploaded CPython 2.7m Windows x86-64

boost_histogram-0.10.2-cp27-cp27m-win32.whl (616.4 kB view details)

Uploaded CPython 2.7m Windows x86

boost_histogram-0.10.2-cp27-cp27m-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

boost_histogram-0.10.2-cp27-cp27m-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

boost_histogram-0.10.2-cp27-cp27m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 2.7m

boost_histogram-0.10.2-cp27-cp27m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file boost-histogram-0.10.2.tar.gz.

File metadata

  • Download URL: boost-histogram-0.10.2.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for boost-histogram-0.10.2.tar.gz
Algorithm Hash digest
SHA256 a3cc23c282eb6745d91840cb0e12f947ce963f427fcb0664a024653e0316a7c7
MD5 67c87e7b9774bf7aaae0ca19c533f9ae
BLAKE2b-256 a7f7d7ebbb2de90bd1ad82fe75288da6f0d686c0f9b17ac23a8a61ea29ee11a9

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 683.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 11714c4904b4e5e379d7117f8ba93997710e939fab027834e6d9b0d59d091472
MD5 1376613ac7f98ac62833ea12bd825baa
BLAKE2b-256 e498a044f2c5a432cd35b4db23fd85c84062eb2567357874e59337f8f4b59be6

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 553.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 cfc1ccdd628ad92588073d8373e90802440e1d8db3b4bac8062b87a25baec8e7
MD5 e4c2951718d44d51e6870c3c327102ce
BLAKE2b-256 4d5c9ebc653d98645c86d323b6458f8b5023e6ea1974d0e9e7057161d558e960

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp38-cp38-manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for boost_histogram-0.10.2-cp38-cp38-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6d226ea6cb5f082ed7e5febe2193fd61a8dddcbeabbe2ca3ea81ef5d7968db61
MD5 3bb8b55a55e8bd1fa8a2928ab41ffba2
BLAKE2b-256 7a4cf0616873f7f949105db865d140c39421015f1246814ebedbd2da820de1ac

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-0.10.2-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 27579c12f3955e387153100bab3dda42048e1407383a8a52c2c8149f848e02cc
MD5 a0d99661d5ef04da85975a3fae3dc87a
BLAKE2b-256 ef5fcfa50f23bf1975507b2cb55a89ceec2c344d95156ec446b52dc4917a5cdf

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 046da18f64993efa9582639a32bad84f08741596127a4654efaf914d44ca35d9
MD5 f5ee392470901ae90df16d5da967888f
BLAKE2b-256 9b30b5ba244562386352464e092b9fd7c44d23a8bcd924d22c7e1a8f945fdb86

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5d61521e7b31a37f967a7130b43048d5e5dcde9e09abf8fdd3cbeafdfcc53b79
MD5 52155a577574eb110ddc53c44a7f7dbd
BLAKE2b-256 cccbfc8f946a7a5e01edc9ac66bf144da43536a672320d6222588e33e648a987

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f4fd56cdcb1783dc04e7c7ae5d967c7fa1392d04e06174db987022d89f67a924
MD5 840f7bb4ca64f941ba5fec53ea09d175
BLAKE2b-256 61867d75407523721ffbb2f4858cb9781c1e7e6cae229e1561a14ca77b872a4e

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7b51972b2e5c9995ba04dc7ae240ae595e6dd862005a5f6c01e5db98e1c0dd45
MD5 679968b048298b732d3997a2f98a7fa0
BLAKE2b-256 7d06afbc6b223e2172f8e0736ffc1daef4af7708705833c5fdda7fb4c64cfc1d

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7053f165ee0692ce2aa065ae8c9799898a1436ff735d867cd5a83759fea3ac1f
MD5 de7dc5da552a94fa0d9aafcdca4b70f2
BLAKE2b-256 8e908cd0059704718d241552eccedfa61cca64d03d6612866a5e17f116aba87f

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 661.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 296488b668c8f4078face1b61ce814156835c63416a42986aee9056bfc496db6
MD5 a98eba6836917894d70bf6b9e41beea6
BLAKE2b-256 b1db067618e946ce7863b8be378646323b0c333517aa8dc618ad2cf01222de52

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 559.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 f8d85de6874cdb879bcbac03674b4af45d3818609b656e62e1353a4641efecb3
MD5 54deb3533fb81f594d3608114f157b47
BLAKE2b-256 8c58b1e7266bcdde2695ab3bca0111691f683ba166608abe8a95fa5bfc56851c

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp37-cp37m-manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for boost_histogram-0.10.2-cp37-cp37m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 061b19250ccd0c2dc1667c08f4a3000fcc7c7ed2102141f1360106abb0319d2c
MD5 182a2a2d9413c09798a9dd1ab25cbba5
BLAKE2b-256 f675d63fcd480311aca15d3e0d19b63d901db4a5b4f6e3568d316f38a05ad3b3

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-0.10.2-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7f2235a9048c9b7c33e1b8b46cbf637dde928934c6cc7f8a25fd82203dab91a6
MD5 56ec89df329cd3508c649087ffab70a2
BLAKE2b-256 77cb61222e49a8fc0e822f932a026f3944ac7af64e0e998f6027392a1f08eaa8

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4d9a762237475c51d9ffcd958d4bbfa54cc1ffae08ad81bb2ffa5b03e69ab4d5
MD5 d74e10fb9c2d9bca8c8955e037cfcafb
BLAKE2b-256 a3767772fe7c937a7711486a92ba983381e90c7f11887ce4496ee30f5744187b

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 084b6e0a65715e694719748bb63ae7bf97db976b79199c0ec03f805572ceb10c
MD5 60b3517d7e7dac7f16bf19cb56adfc55
BLAKE2b-256 a78f9cd2182ffad3322475a216cb7c6fb12bc0f8ad16c9ce8276b46bd73857ef

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 04d0f71dd7024c506e36dc1b4d58fc35f90104b96fb0b49c8fa8e6c9425f6a8f
MD5 dbf10fe28fb11d5bc95d167f0da8e112
BLAKE2b-256 1a9b119fbddca1c1233fddb34a37e4d4b8e025b7b812d631aa8b3ccd3812f891

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d7859ecfba400c7f846a7e3ccb770f264b7cc6766689226a4fe910b9a220787f
MD5 90babb2aa74419123164238ec8715f2b
BLAKE2b-256 ad37263e9b01716c64539bb691779411bbce87365890667d4a7a2be7d2d2e956

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f80b5bd5a0b593abb7b94864759f597de948d49295db36102b68f131efb627cb
MD5 4f9c1a06057d7b039253de6b542812b9
BLAKE2b-256 20949094270b89699f6c788308449c3d8ea074b7eb00a3c9b662af20fb3f0b7c

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 661.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 111b3d86fdc0e196143026c7179267204c996fb68ab851a2f6cd5e1a63a76f3a
MD5 1600ef7d307e03d7cfdc0225d67bcc78
BLAKE2b-256 d30d1dd2dd28aa76cc93d9f866a959df6af87ab3e65d00fad6fb895ed38a3a24

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 558.8 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 56c206746b42dc65d8b4f792b279eb608cb6d85fdc4312af161d312d40dfca53
MD5 e88aaf9fe257fba714eca8f9d21b3e48
BLAKE2b-256 8b8acf79c9819e38555aca1c5055feae86cf6d3cfeaf8d23c2cf3ba7010fdf93

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp36-cp36m-manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for boost_histogram-0.10.2-cp36-cp36m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d6a7f717653a8107c51a9dda0c7f3e27c4ea27c6e544be22c9b40161b3df9f7a
MD5 8a340902d954b20dea847cfa0afda0e9
BLAKE2b-256 9acb31bae9eaa0153bc2c33977face99b3ae5ab7cc033493666ccc2f8963ce0b

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-0.10.2-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0064b5d6fb9bf063cc4d146d3e37cb4416d435819f91b44c770492a74ba9fcc3
MD5 441bbc4bb78f69ca5b42817cc3ec3f87
BLAKE2b-256 15b165e6a62066c643337c202d43e6c7f41f501a4726c36cd8a04a7f470dc848

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 271c05be165edcd940e3b064a23b84ea8e0a04f864d8def0c3f77baab13cb260
MD5 7c0f3a6749414283d014163f1f4d9953
BLAKE2b-256 f54e4d3d10fb71e4999c4338ff1850bfa47a18f57d82733c080089e90b001108

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 fdb89e7de4e03f966789018a49a487ca12ba916acc40628f1b4b4ca65e2de1bf
MD5 c98202bef63c13ad4d95581de6d7e010
BLAKE2b-256 dbe41a5f67d0c1ba47473bdd9c46bb58068f95f68d755ab2f08c4d54a92ae2a2

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ff144dc5063a6747f77ba98522f02edd6d4fa3741330f992a8b3bce14c6eaf7c
MD5 5f4fadf117753bf0074686ba33d9ebdd
BLAKE2b-256 944e60f754e3c8f6dceb68f44d2ff12663fc0acf70c77b3a0dcc1ac6ebf77814

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8fc6a37d457c8fb0461911375dc0afe335bf3628abf64ddce4c936102be19813
MD5 041baa459700d2d9de96a0182bb32188
BLAKE2b-256 49d839a2c9f9ca3e0817d5411a6d6de9bf27bb40517f97be1ace795478f18ee1

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c2cecddb0d632970a81a225946fd681daffbc131ce73268309476711ed2b364d
MD5 b8d530b4f565d2836fa6bf0ba7b17e80
BLAKE2b-256 4ac466b41eda8fe7d4a9a0dc49edba6540023c8703c964e216ec16a3643bd71e

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 661.4 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 7107242b490f5747c86f2361a974f7a05a07cbccd7d6371a56b6329e6a243d81
MD5 0e687998e2587c2dc2ce8204a203e812
BLAKE2b-256 85eb9a2a11d1709d578709a4d2452919254883e3b5ba402937a8d37523972ade

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp35-cp35m-win32.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 558.8 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 748c1d50e9455124807ea442dc0519f8ecac1c625b083e139e72bbedd9b2bc79
MD5 80b4b8887a16345d25ae4fd3439b85b5
BLAKE2b-256 3ab96862f9da29bc5c08e2b3c9b846dbc39df2090d5a7f87f7d176ed59d8e537

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp35-cp35m-manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for boost_histogram-0.10.2-cp35-cp35m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 dbc3901ad457e2a3faddf8d408323c2bb04be6a3b3474c1c97ff8a131d64d4b8
MD5 d4213f1922ee0b90dd4ace36674a5ee1
BLAKE2b-256 74deda75bdcee9b82399e226e0f4d5663d7b7b18fd2e87b92fa79eb07af0f71c

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp35-cp35m-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-0.10.2-cp35-cp35m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 191c16685ac3ae5aca470768c65f267a9184a9c76bfc7b6b4f36e6d9c92ebc0b
MD5 e2e46f77a3a3be7b1e40b3e561fa718f
BLAKE2b-256 0280e55798f90cfec2c6ba75bb8a3e1e7c5654b460d03d339f184e1978b054ab

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8d60f2272eacd7e5c2534bbb7a8ebcdc646c6da36833f3788beeff44b3fb5d18
MD5 05c9871caa6ddbbf261ca849f01d3609
BLAKE2b-256 aa7d84022734863d8523952029479681e3a2e957b36b0438a78b21c1668f5805

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3da76321ae01fbe689f9ebeef275c20f6c87715b9e80bb36a68e56074e63a198
MD5 2023729f4bf2db5fda9bdc89a32bb042
BLAKE2b-256 3d1cb7b69929498dd8834bd2534090433ba286b3709967631e7395912a7df95e

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f8d793a9e02e77584072b0f0cd8290804d7016ff0ae594d86ff3e3a778bb29b9
MD5 7537a07d7514f103a9c85436588a043d
BLAKE2b-256 3e0fb4785ec5ee010b911ba2896b3639bc84d202a29ce7c257ae8ec389304aab

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9e6e1c5a27bb274ed297561b2c268eec874180f9e02ade458e027493c934def9
MD5 435522c2139234347ae260053fd188b4
BLAKE2b-256 3d82bbb76602cfd58715588323ca53820f2fddc053a179cf5d4b4254b84d60fb

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b9f1d0ff446bb0afecc3c714cc67f4c30c08650d4dfbc95c12db5d64dd280042
MD5 8f9693940c2d2346fbc8423a88d740a9
BLAKE2b-256 3a0bdd556fd7a7966f2f86e24c8f684f2652948626116250f65ea6dd798469ec

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f60df11e6cf0b430fd2881e9d40dcde6464b1def36d5d93232b8da9e1348610e
MD5 dbf6306f05f0aa3846d89591cda9bb41
BLAKE2b-256 ea4d4789de89c5a43d224bd8dc03f0d46d968d7401f9912cbbf7f4fadf88ce40

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ac75d3d6bf883a24d2856a926463151d0710aa2461d2679b708f0e2d6231ef00
MD5 aaafe169bf7585034b8e3fe1ffa6bede
BLAKE2b-256 86e34e4bd99b38e2d8f66ffcbb9c3add56b3324f70cdb309e08128709c20fdfa

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a211f24e712bb1aaba2b9ebe86a43b631438835055a57239d77d233a6e54cfd4
MD5 a8e9f98e86d7e6b20dbf46f8ea4cf788
BLAKE2b-256 9d1d281cbc336b927372800ade30c7b90523d25690d8d25a7b60f399ebc1e2a3

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 73f682326fab57aa88783f608bce8bed942d290ed5648ea72b3e3e5f7522525f
MD5 84fb2acc89986bcec71644903c9e9ee0
BLAKE2b-256 55ce9f954b76da34b63174dba5255b3a4516965b3442d8fcd8875cd02511d790

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 719.6 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 33686bc61bf77322e19f43025dd9823679afc7a730e71f79235c2448dac0507b
MD5 6964a755952f4fcb32df11a61c6d401d
BLAKE2b-256 3456bff39274fdec86e667b181a7fa0608f10c54a866ddbd1465a6bf9b9f32f4

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp27-cp27m-win32.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 616.4 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 2bd4221d94214736a4c517bea52afc4177c7ce78d6971c187e6555fdfa5f7cf9
MD5 736051a3f03924c4f2fde757dde17030
BLAKE2b-256 fea496db7885ee0fbf88ceeaf2b90eb0a74d6ac84b6e554c1ef476ee7310d965

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9019a7540f9804e6ba3a2b7aa6d7f0aa31c97e300f8ee0aebfb4c12607dcda94
MD5 55c5b17e5ae1366143873bdfe055e265
BLAKE2b-256 04c10dc365694ad8fd8ead7740a956994e06a0da7669ca2bb3dc1f3090400aaf

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 50a15ed9c7c36000ceddc57fa0bcc4e67c6f2c4edaf263cd41db845ad5862b57
MD5 45358be024bb2f39832cd546781fcd41
BLAKE2b-256 9f829e895954dce2ad6c614e8236a966c4a3fbab6da34781e819da7f727718a1

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 692296175d82c95c850bca4b069f8190ae4355f12eb59180349a41476680b13d
MD5 65f6fb12babe2b3193df464e39d63479
BLAKE2b-256 bd363659a7236b5177672188eac00584986d980a7b8796b8b5c081075427b2c4

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f66520fac7a5a3592a3757d857743c8f81944ce8707b4835a6602555b2b9f2d6
MD5 ffe97f7ee8a7be593bf9cf22dac91118
BLAKE2b-256 5aebcc1baea1e558db4154d87e607dabbf363191db0c71d0691125302383d3fe

See more details on using hashes here.

File details

Details for the file boost_histogram-0.10.2-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.10.2-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.5

File hashes

Hashes for boost_histogram-0.10.2-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fc34163efd79e18ed3d61c61c76f62603fce54349791a6567b3dcab0784b7bb2
MD5 49b9767b026bfbaca58bc6f484dde146
BLAKE2b-256 5c1a55e403223e2f5a22e7218887d4957864969dd74826486b3771b8b73801b0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page