Skip to main content

The Boost::Histogram Python wrapper.

Project description

boost-histogram logo

boost-histogram for Python

Actions Status Documentation Status Code style: black

PyPI version Conda-Forge PyPI platforms DOI

GitHub Discussion Gitter Scikit-HEP

Python bindings for Boost::Histogram (source), a C++14 library. This is of the fastest libraries for histogramming, while still providing the power of a full histogram object. See what's new. Powers Hist, an analyst-friendly histogram library.

Installation

You can install this library from PyPI with pip:

python -m pip install boost-histogram

or you can use Conda through conda-forge:

conda install -c conda-forge boost-histogram

All the normal best-practices for Python apply; you should be in a virtual environment, etc.

Usage

import boost_histogram as bh

# Compose axis however you like; this is a 2D histogram
hist = bh.Histogram(
    bh.axis.Regular(2, 0, 1),
    bh.axis.Regular(4, 0.0, 1.0),
)

# Filling can be done with arrays, one per dimension
hist.fill(
    [0.3, 0.5, 0.2], [0.1, 0.4, 0.9]
)

# Numpy array view into histogram counts, no overflow bins
values = hist.values()

Features

  • Many axis types (all support metadata=...)
    • bh.axis.Regular(n, start, stop, ...): Make a regular axis. Options listed below.
      • overflow=False: Turn off overflow bin
      • underflow=False: Turn off underflow bin
      • growth=True: Turn on growing axis, bins added when out-of-range items added
      • circular=True: Turn on wrapping, so that out-of-range values wrap around into the axis
      • transform=bh.axis.transform.Log: Log spacing
      • transform=bh.axis.transform.Sqrt: Square root spacing
      • transform=bh.axis.transform.Pow(v): Power spacing
      • See also the flexible Function transform
    • bh.axis.Integer(start, stop, underflow=True, overflow=True, growth=False): Special high-speed version of regular for evenly spaced bins of width 1
    • bh.axis.Variable([start, edge1, edge2, ..., stop], underflow=True, overflow=True): Uneven bin spacing
    • bh.axis.Category([...], growth=False): Integer or string categories
    • bh.axis.Boolean(): A True/False axis
  • Axis features:
    • .index(value): The index at a point (or points) on the axis
    • .value(index): The value for a fractional bin (or bins) in the axis
    • .bin(i): The bin edges (continuous axis) or a bin value (discrete axis)
    • .centers: The N bin centers (if continuous)
    • .edges: The N+1 bin edges (if continuous)
    • .extent: The number of bins (including under/overflow)
    • .metadata: Anything a user wants to store
    • .traits: The options set on the axis (bh.axis.options)
    • .size: The number of bins (not including under/overflow)
    • .widths: The N bin widths
  • Many storage types
    • bh.storage.Double(): Doubles for weighted values (default)
    • bh.storage.Int64(): 64-bit unsigned integers
    • bh.storage.Unlimited(): Starts small, but can go up to unlimited precision ints or doubles.
    • bh.storage.AtomicInt64(): Threadsafe filling, experimental. Does not support growing axis in threads.
    • bh.storage.Weight(): Stores a weight and sum of weights squared.
    • bh.storage.Mean(): Accepts a sample and computes the mean of the samples (profile).
    • bh.storage.WeightedMean(): Accepts a sample and a weight. It computes the weighted mean of the samples.
  • Accumulators
    • bh.accumulator.Sum: High accuracy sum (Neumaier) - used by the sum method when summing a numerical histogram
    • bh.accumulator.WeightedSum: Tracks a weighted sum and variance
    • bh.accumulator.Mean: Running count, mean, and variance (Welfords's incremental algorithm)
    • bh.accumulator.WeightedMean: Tracks a weighted sum, mean, and variance (West's incremental algorithm)
  • Histogram operations
    • h.ndim: The number of dimensions
    • h.size or len(h): The number of bins
    • +: Add two histograms (storages must match types currently)
    • *=: Multiply by a scaler (not all storages) (hist * scalar and scalar * hist supported too)
    • /=: Divide by a scaler (not all storages) (hist / scalar supported too)
    • .kind: Either bh.Kind.COUNT or bh.Kind.MEAN, depending on storage
    • .sum(flow=False): The total count of all bins
    • .project(ax1, ax2, ...): Project down to listed axis (numbers)
    • .to_numpy(flow=False): Convert to a NumPy style tuple (with or without under/overflow bins)
    • .view(flow=False): Get a view on the bin contents (with or without under/overflow bins)
    • .values(flow=False): Get a view on the values (counts or means, depending on storage)
    • .variances(flow=False): Get the variances if available
    • .counts(flow=False): Get the effective counts for all storage types
    • .reset(): Set counters to 0
    • .empty(flow=False): Check to see if the histogram is empty (can check flow bins too if asked)
    • .copy(deep=False): Make a copy of a histogram
    • .axes: Get the axes as a tuple-like (all properties of axes are available too)
      • .axes[0]: Get the 0th axis
      • .axes.edges: The lower values as a broadcasting-ready array
      • .axes.centers: The centers of the bins broadcasting-ready array
      • .axes.widths: The bin widths as a broadcasting-ready array
      • .axes.metadata: A tuple of the axes metadata
      • .axes.size: A tuple of the axes sizes (size without flow)
      • .axes.extent: A tuple of the axes extents (size with flow)
      • .axes.bin(*args): Returns the bin edges as a tuple of pairs (continuous axis) or values (describe)
      • .axes.index(*args): Returns the bin index at a value for each axis
      • .axes.value(*args): Returns the bin value at an index for each axis
  • Indexing - Supports the Unified Histogram Indexing (UHI) proposal
    • Bin content access / setting
      • v = h[b]: Access bin content by index number
      • v = h[{0:b}]: All actions can be represented by axis:item dictionary instead of by position (mostly useful for slicing)
    • Slicing to get histogram or set array of values
      • h2 = h[a:b]: Access a slice of a histogram, cut portions go to flow bins if present
      • h2 = h[:, ...]: Using : and ... supported just like Numpy
      • h2 = h[::sum]: Third item in slice is the "action"
      • h[...] = array: Set the bin contents, either include or omit flow bins
    • Special accessors
      • bh.loc(v): Supply value in axis coordinates instead of bin number
      • bh.underflow: The underflow bin (use empty beginning on slice for slicing instead)
      • bh.overflow: The overflow bin (use empty end on slice for slicing instead)
    • Special actions (third item in slice)
      • sum: Remove axes via projection; if limits are given, use those
      • bh.rebin(n): Rebin an axis
  • NumPy compatibility
    • bh.numpy provides faster drop in replacements for NumPy histogram functions
    • Histograms follow the buffer interface, and provide .view()
    • Histograms can be converted to NumPy style output tuple with .to_numpy()
  • Details
    • Use bh.Histogram(..., storage=...) to make a histogram (there are several different types)
    • All objects support copy/deepcopy/pickle

Supported platforms

Binaries available:

The easiest way to get boost-histogram is to use a binary wheel, which happens when you run:

python -m pip install boost-histogram

Wheels are produced using cibuildwheel; all common platforms have wheels provided in boost-histogram:

System Arch Python versions PyPy versions
ManyLinux1 (custom GCC 9.2) 32 & 64-bit 2.7, 3.5, 3.6, 3.7, 3.8
ManyLinux2010 32 & 64-bit 2.7, 3.5, 3.6, 3.7, 3.8, 3.9 7.3: 2.7, 3.6, 3.7
ManyLinux2014 ARM64 3.6, 3.7, 3.8, 3.9
macOS 10.9+ 64-bit 2.7, 3.5, 3.6, 3.7, 3.8, 3.9 7.3: 2.7, 3.6, 3.7
macOS Universal2 Arm64 3.9
Windows 32 & 64-bit 2.7, 3.5, 3.6, 3.7, 3.8, 3.9 (32 bit) 7.3: 2.7, 3.6, 3.7
  • manylinux1: Using a custom docker container with GCC 9; should work but can't be called directly other compiled extensions unless they do the same thing (think that's the main caveat). Supporting 32 bits because it's there. Anything running Python 3.9 should be compatible with manylinux2010, so manylinux1 not provided for Python 3.9 (like NumPy).
  • manylinux2010: Requires pip 10+ and a version of Linux newer than 2010.
  • Windows: pybind11 requires compilation with a newer copy of Visual Studio than Python 2.7's Visual Studio 2008; you need to have the Visual Studio 2015 distributable installed (the dll is included in 2017 and 2019, as well).
  • PyPy: Supported on all platforms that cibuildwheel supports, in pypy2, pypy3.6, and pypy3.7 variants.
  • ARM on Linux is supported for newer Python versions via manylinux2014. PowerPC or IBM-Z available on request.
  • macOS Universal2 wheels for Apple Silicon and Intel provided for Python 3.9 (requires Pip 21.0.1).

If you are on a Linux system that is not part of the "many" in manylinux, such as Alpine or ClearLinux, building from source is usually fine, since the compilers on those systems are often quite new. It will just take longer to install when it is using the sdist instead of a wheel.

Conda-Forge

The boost-histogram package is available on Conda-Forge, as well. All supported versions are available with the exception of Python 2.7, which is no longer supported by conda-forge directly.

conda install -c conda-forge boost-histogram

Source builds

For a source build, for example from an "sdist" package, the only requirements are a C++14 compatible compiler. The compiler requirements are dictated by Boost.Histogram's C++ requirements: gcc >= 5.5, clang >= 3.8, msvc >= 14.1. You should have a version of pip less than 2-3 years old (10+).

If you are using Python 2.7 on Windows, you will need to use a recent version of Visual studio and force distutils to use it, or just upgrade to Python 3.6 or newer. Check the pybind11 documentation for more help. On some Linux systems, you may need to use a newer compiler than the one your distribution ships with.

Boost is not required or needed (this only depends on included header-only dependencies). This library is under active development; you can install directly from GitHub if you would like.

python -m pip install git+https://github.com/scikit-hep/boost-histogram.git@develop

Developing

See CONTRIBUTING.md for details on how to set up a development environment.

Contributors

We would like to acknowledge the contributors that made this project possible (emoji key):


Henry Schreiner

🚧 💻 📖

Hans Dembinski

🚧 💻

N!no

⚠️ 📖

Jim Pivarski

🤔

Nicholas Smith

🐛

physicscitizen

🐛

Chanchal Kumar Maji

📖

Doug Davis

🐛

Pierre Grimaud

📖

Beojan Stanislaus

🐛

Popinaodude

🐛

Congqiao Li

🐛

alexander-held

🐛

Chris Burr

📖

Konstantin Gizdov

📦 🐛

This project follows the all-contributors specification.

Talks and other documentation/tutorial sources

The official documentation is here, and includes a quickstart.


Acknowledgements

This library was primarily developed by Henry Schreiner and Hans Dembinski.

Support for this work was provided by the National Science Foundation cooperative agreement OAC-1836650 (IRIS-HEP) and OAC-1450377 (DIANA/HEP). Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

boost_histogram-0.13.1.tar.gz (1.0 MB view details)

Uploaded Source

Built Distributions

boost_histogram-0.13.1-pp37-pypy37_pp73-win32.whl (571.8 kB view details)

Uploaded PyPy Windows x86

boost_histogram-0.13.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-0.13.1-pp36-pypy36_pp73-win32.whl (571.9 kB view details)

Uploaded PyPy Windows x86

boost_histogram-0.13.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-0.13.1-pp27-pypy_73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.1-pp27-pypy_73-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-0.13.1-cp39-cp39-win_amd64.whl (840.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

boost_histogram-0.13.1-cp39-cp39-win32.whl (570.8 kB view details)

Uploaded CPython 3.9 Windows x86

boost_histogram-0.13.1-cp39-cp39-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.1-cp39-cp39-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

boost_histogram-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

boost_histogram-0.13.1-cp39-cp39-macosx_10_9_universal2.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-0.13.1-cp38-cp38-win_amd64.whl (750.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

boost_histogram-0.13.1-cp38-cp38-win32.whl (570.7 kB view details)

Uploaded CPython 3.8 Windows x86

boost_histogram-0.13.1-cp38-cp38-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.1-cp38-cp38-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

boost_histogram-0.13.1-cp38-cp38-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.8

boost_histogram-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

boost_histogram-0.13.1-cp37-cp37m-win_amd64.whl (758.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

boost_histogram-0.13.1-cp37-cp37m-win32.whl (581.7 kB view details)

Uploaded CPython 3.7m Windows x86

boost_histogram-0.13.1-cp37-cp37m-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.1-cp37-cp37m-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

boost_histogram-0.13.1-cp37-cp37m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.7m

boost_histogram-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

boost_histogram-0.13.1-cp36-cp36m-win_amd64.whl (758.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

boost_histogram-0.13.1-cp36-cp36m-win32.whl (581.5 kB view details)

Uploaded CPython 3.6m Windows x86

boost_histogram-0.13.1-cp36-cp36m-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.1-cp36-cp36m-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

boost_histogram-0.13.1-cp36-cp36m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.6m

boost_histogram-0.13.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

boost_histogram-0.13.1-cp35-cp35m-win_amd64.whl (758.1 kB view details)

Uploaded CPython 3.5m Windows x86-64

boost_histogram-0.13.1-cp35-cp35m-win32.whl (581.6 kB view details)

Uploaded CPython 3.5m Windows x86

boost_histogram-0.13.1-cp35-cp35m-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.1-cp35-cp35m-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

boost_histogram-0.13.1-cp35-cp35m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.5m

boost_histogram-0.13.1-cp35-cp35m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

boost_histogram-0.13.1-cp27-cp27mu-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 2.7mu

boost_histogram-0.13.1-cp27-cp27m-win_amd64.whl (885.2 kB view details)

Uploaded CPython 2.7m Windows x86-64

boost_histogram-0.13.1-cp27-cp27m-win32.whl (631.8 kB view details)

Uploaded CPython 2.7m Windows x86

boost_histogram-0.13.1-cp27-cp27m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 2.7m

boost_histogram-0.13.1-cp27-cp27m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file boost_histogram-0.13.1.tar.gz.

File metadata

  • Download URL: boost_histogram-0.13.1.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1.tar.gz
Algorithm Hash digest
SHA256 f170fadf92ee9d4cd0a95bb5babfde79fa438e2bb8011381f157805cb054c949
MD5 ab34a018303816e8b1ef8f0c8593df8f
BLAKE2b-256 a72b7791de221609079640d0778e7640b4da8a18b73086f0131a3976d8149cc4

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-pp37-pypy37_pp73-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-pp37-pypy37_pp73-win32.whl
  • Upload date:
  • Size: 571.8 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-pp37-pypy37_pp73-win32.whl
Algorithm Hash digest
SHA256 80c9981e0cf86e3d0a4cee061d8f9f4e53e1cc9596dd70fc1b98d16a44b6f03a
MD5 acd26673b67e8e98b6ba016e0c2da854
BLAKE2b-256 36c0bcea7569d2e2346ffdbaba795eecad191c4d120671d61bea5b0b545c19ef

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d9380534b45bb3eccc256dd15feec5da0dd52c89237e9b9d93b4df57510095bb
MD5 0fb6e65daabdfd12fca1624d304aff1d
BLAKE2b-256 3d9644e98062f41e088d90f129e074dcd73b42a5bcf06abaef9b1bee8cc40d6a

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-0.13.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 de12d267b47caca637c485b48574364c7a0a32767016f20c4f323288f397cb60
MD5 056b52826ca88096cb3aaf10c255c85e
BLAKE2b-256 528263b44a5eac32c33d414e1b58c182c5fa868dfde45a497666b218f422ecce

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-pp36-pypy36_pp73-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-pp36-pypy36_pp73-win32.whl
  • Upload date:
  • Size: 571.9 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-pp36-pypy36_pp73-win32.whl
Algorithm Hash digest
SHA256 d8969232dcef3ae3f823ddc62a5480cbea76b67558ed5d1b0e0fb915946fdbd4
MD5 f832300adc2fd8df8a909884d03d9f26
BLAKE2b-256 9b49a771e33adb3faf3376cafdec8b56bf0862e8f3219379a2fd1ea0bedbadf3

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f5e0379ca6ee7c7f86df917977f4cc85bb2f5e8448cb44152c3f7d944e9ee6f6
MD5 8e9156f5cd9e974a3a0dcb6d38e7547d
BLAKE2b-256 8f28181672025698b166850a44482acf87af8f2839390bdecb2bddc574b730af

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-0.13.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 107a0da0f24a11e568b273b78fe9b3b01d9effe539630dec58ee9343e98301ed
MD5 5ede3fd6eb9f0e4ba2dcdc1c87bd752c
BLAKE2b-256 9b83c69cebf27df7b1ff22f0928f7b97ac102b4f5cef64a8f9e460728fb8a4b8

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 269dc5413ac9ad1332d735d49254eb13e9d4b5097a04b112eccc9729a7453c74
MD5 f48eddff997888a456271c12521dc32f
BLAKE2b-256 861787172b40e651968987115643b68004ff41f2ed38dc4ce4adc7d8f8223021

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-pp27-pypy_73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-pp27-pypy_73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-pp27-pypy_73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ef636398b7aea0c441cd6e35cada4c0fa382dc91422b7a1396fbfb28a9ca1d60
MD5 a0c4bcdefd217e440b8e826238200cb8
BLAKE2b-256 2bdf39e53519fe20e15dded8eb762e70111dbe0c6f457aa0c9c8b664bd87fd13

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 840.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 218f64b729108d1e710a5653819e2a790a1703013bf1d3a112bf271d075dc9e4
MD5 10c71af7bf27b5432fc74861b0bfbb3f
BLAKE2b-256 964d6b18bd91d350a53bf32fb9f85d03eb2a4520400a41b38ae4feb7b1c7bc45

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 570.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 46b85e9beed5360960556b0b0783c3ad8fb894ec6e3373265b4b54cbc1914e37
MD5 39466e0408d62dfc7df49b4429fa4300
BLAKE2b-256 c4e5bfc80b57861c7731ff70edd860c8192c5f527bb366f025ae62299c4d2d58

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4ea6a04137b61e477da5beffc8c009782c4f354097466292b2738edaadcb17a0
MD5 f4d836f14267f11885ae4316004b3fe1
BLAKE2b-256 263ffee99e32f5ff01eb80f49333d61f746f3768b62c349f7ddca6a058bf390b

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 460b8934b973e905c18e24fddc41534fe34ae29ee90c52067a43b2737d4330e8
MD5 3e83ddce194e7db89684a36e1e1d9a7a
BLAKE2b-256 a403bb0ba7f178bfd14ae5b80f1afdf19667ef08ec50ad2ac913586305276271

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6cbb47b27cf4f01a70aa64f57b8dee6b62e612ab6e22f02a38d784cc0dded847
MD5 575926319e8c2ad18bf4c533a32be5ee
BLAKE2b-256 efde8506464e2649235e2c63e65035359637eb3c8465eedc2d9695de27f006ec

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 698e5a7e0bced3c89b3b42538e9127c5d4c590af9152ce1de4f9ad141d99d3e1
MD5 ddd7e60ea8738f41a5464944825e83fc
BLAKE2b-256 790e5614849918eeb56d8a38a8f840218cc192fd1a807ca07359f05de10715cc

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 12ed2cccd215a67d044a2bf8955133b5b98cc9bcc5c0bf1cb34b7c5be61cf645
MD5 029d8816f2bca3dc59327b37e361c8e9
BLAKE2b-256 e2c5c53a016c322996cf866a3fde86c260210eee21ec9d61e71b5402d30ccd8d

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 750.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 08951c73b0ba66402686d92a45dc8b0d4cd21381818056a2f7a0d0782a232c3a
MD5 d70a38191c228cfc853e6f53f49a3d44
BLAKE2b-256 8ff4a35a89134c221bad4337d955269bf63f0e8de30ed790296f53968cac2dd3

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 570.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0a750912e4a18c00011ea59c9c15dc9b032ca5196fc515df9efd4d0c23dfa925
MD5 d204293a1621e9a03dda0304df197b51
BLAKE2b-256 aa3ad9ba950b8744809c25fb5fca5096e94f48c93029d5263f603b2c3606a8f0

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 00171f9f77c6a65e2091e4718757b227b3583e1ad1c9bc4c2d9fa31cf245a02c
MD5 e001a29360ae990f455e026afb729b98
BLAKE2b-256 4708390a0cbd41e54e31d04944a5790e2b54e03a6c53a34bd212754267ec81e6

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 851e10109a303df53f8ed5badb3bce65607b80774ae627a4958c81c1fc193bae
MD5 2282725cd11a73a6a717612f8eafa0e5
BLAKE2b-256 46f028c496b70385f4c18e58e1b43dd48a26173900639092a8dc310f4f88f8a1

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 56ef0317e145e83c3b7ce9f691858f1af9e99654c059c31679eaf214fbc5f523
MD5 fe55481ed59326dcd145daa3aa0123de
BLAKE2b-256 fd299080b9e50de81c3a3958c0a1f74396887f93637a28c4f8e742b6cf616ad0

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 947599d4799c7bd58174d43a80ac25074e39279e42939a1766d232f7ad992a4b
MD5 654ea389ba29e24b4e8eaf6fb6028175
BLAKE2b-256 6e614cec9425fafd458d28ad6cef14ce1ea8b963c5686217a6ae73b98f359110

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c7f293f3927d3a6164fd07a793d4bf4a3e1f47fd769c537b11610082b48007bb
MD5 05e071978cfe49205860c2ff6b0d4d98
BLAKE2b-256 e8d2866c6c9d40e4d21db4b855d02c6c983a93771baf8005cdfd649886c6a94c

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6cc5889e942b02beb0668486aac6d57cce0f31a980bbc5d6742938443b858e45
MD5 6e20c42f341b0a92c80296c82517ea33
BLAKE2b-256 32091944db7ecd24a76f1e48905197e39f37655fd593b45e2ada37044ff4f41f

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 758.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c242b6466b3ccc2353f93816d18eec62789e3a25eb55a22d71bd9e3634c742b1
MD5 9dad300a9b2a8d462483d4416b08a57d
BLAKE2b-256 db6c34bf2725da8b39302d9a28122a86443de4ffefc752bd91e634430bc13973

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 581.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 8557a65df0ec011ce1f932894fde13f2e7f0f4fc1da3b640b41f52bd0b7f3cec
MD5 2ae5640f44744fdbcb7428560517ca24
BLAKE2b-256 702afc9258df65defe14632183e45049399fe2c7d41f4015efc18d1d9708346e

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-0.13.1-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6214c875e13be0f8125ab2ccad259fce37abeadc47a9b204a3d075105930f7ab
MD5 6053cab7a918926beb1fa663c4f7e16c
BLAKE2b-256 ee2eed28e138b8ea4d2bed2e2c4f35fbd68b3f9c02d417f8bf043eee4c341a1f

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ae49600222516634514df0bee82276825f0bbbea263066a9e9149ff62a65c953
MD5 8081464016903a238484231cc49a54fd
BLAKE2b-256 dbadf3b765b5c822621946c8544f02fb215992ddc7619441c72bb23cb42cf332

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4c7478970d2e5495f5fd282aa16ab6e6c2800de9f83a12cc1012704a9d6c4a89
MD5 9ea90826e5b4207583f4bb7dcb21bd0b
BLAKE2b-256 f6f69c2171f306247ec928af13e191bf930f6fb9494f8b6c028bb7dde0e851ab

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1d31d598bec58c5f61b3c052fb429f86efc83e120cb2934afd6e6ec3162f537f
MD5 8ce66037f11fe9518b9a7cac1e40e7d5
BLAKE2b-256 783abd12ed6c5c9740c1e88d9deecea61fb1b4e7db37c94ebf3fd6dfaf329339

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f0b95a4bdb3baf164cd07a072ca23912c962595a9611af9cd936f7bbe0eeb654
MD5 51679442dc383e90b974057bd41eab35
BLAKE2b-256 1d416d20ce7fca2dd52088d958f5865d9e7d027df9d07674163db1072d9e1775

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 737e1706fd57951f24b074c420aa0ad3a6d9ac20b8ba98d22a3abcb3b73aa240
MD5 8063d930a70f50ea5c641076b7f0dcb2
BLAKE2b-256 f7f4863ef6a4feb99776ecb2d668b9649c8ae18bcabbb126eec008d20565992c

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 758.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 15e64d6a6894fb276addcffb85abbd1ec9c2b54ebf412366615e7f533e58ff0a
MD5 1617c8f198029810bfbbbf5cab698500
BLAKE2b-256 d758b942e8d82aa0fe38ce3b0c4b654bb415ffe77a84d50af052500469e2065a

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 581.5 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 6463b8b84374f03be2a2abb279a26fc5f6468012d3cded8be85e6b3c38892f22
MD5 105c9b3d76e80b42fc1d0b462a8ca514
BLAKE2b-256 4385fa72d60e5af7d082e94d3e6e48c078fec3ec81dad9fa764d16d9723f474f

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-0.13.1-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6526b9d388ac421770822d7d895366bd7e1ce0b11a063fd5864d42cf2b5be275
MD5 4621aee851f1bcefd8d27d5df6e238f6
BLAKE2b-256 45b6955f58770c5714c3e88d838db3ba2a8e8c72aeb8054914d46115a648ef9a

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6fc6e87a8a023ea28d3b57fe8693581680425a2a8ef93654d6c421b5329e0b05
MD5 b99fd23bc6e337cb0100c72abd9ca7d3
BLAKE2b-256 0cc267829a08f3d92c6117a2ccf7fb6b3327942684abcf1628d998860e76f332

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a7808f6a7cd6f6ab4f6151dd3a6401778ac3e4d8f1a8d423a63082e01c6e3981
MD5 b8bd4c72cde6ef1b40bb9bcc7c0ccda1
BLAKE2b-256 a18835acd2ce2fcbe08554f1728d73778555d51b31e6b79f4a36221efb8b47f6

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0da78919bcbdc3f980ba36cd67bda39efb07a9ee8cf38110b113b9bcaccdbab8
MD5 61bbcc286cac6a07826eb5a9967f0a1b
BLAKE2b-256 c6dd7fa16c92908f0370719d520d3aef7130881a23b020c8f51eb98ab4ff7260

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 01fe509c2e07a3e09fd6d54c0d0b2bbe144d3cce4f098333ea309f1ad2cb28ab
MD5 95585e94b71df6729ab3ced3bc931508
BLAKE2b-256 ede2b29091c4845b870899bb6f3cd241caa12cca8ac42e9442e44f08044d2eb8

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 45147adc149994dd68d7211f5a5966b1feae36dc0d2aa39d66748479fc932dcf
MD5 24d8fdc10796c38e063c5390f002f75c
BLAKE2b-256 d0b3691892d16cfe21a1a3322df25cb8d1189dfc5e0530ae68ca674ce38bd58c

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 758.1 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 fcc07d4a2c08be85efdf4c0178879d8e64def2dc93691ed983e0560dc51741ce
MD5 109dfe90bd14db06ef73235a6af187f5
BLAKE2b-256 7deba9a4292dedd7fe49805fcc86327088364e106c4ebb01e6ac2f5f33a7e2aa

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 581.6 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 8d10f4eee033de535b5defb7d738959dd74649ddf8cc368e6a85c2f2955806b9
MD5 2a995c452a2720daeb1546292582f129
BLAKE2b-256 e52a260614db02971bc1b13f03dffe1f98c2b88cb2d986e73c01149c95c34499

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c9b76c7dceeeb70295f7c740a57acb70daec129b79d66a620bc72d5ed74426f2
MD5 13eda1d774e474f58e84f28eba60e072
BLAKE2b-256 f0a2afa9f6d5c0aade4ca6ffa995b79b6f2bd95661875e82eb821a9b168aaa76

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f0b7bfd0416ae82a28eb75e9e3cb3900a49b46629fad5d451883cfa3423bded9
MD5 ae83127f2ee89ed19eff7c91cf9d9112
BLAKE2b-256 6541d3beae8a2b23c308382300e3dd05d5b5027ee1297fc8bcbb4f78f42dbc69

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a7076030f0976b83dee5c22982dbdc7df0c4ef8db70fec66fb5ca471202abb8a
MD5 de94f417d167036861dbdba16039342a
BLAKE2b-256 3253e6bb5a807c47574e3a41e16e19bb7e49070d67b7091a77c93e9f0e120c5e

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d1d8c5b43e79a943c29860821296cfcd00b592ccd6699192b85bf40254dcc179
MD5 efa8423c1648a93a3aae28a1a48c3471
BLAKE2b-256 79e835a2039790e97361b0cac69cec3add181de8965f3aabc51415be7d466ed9

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3944aa2433e92cb6e65c343267800444e5285a170946efda2d188abe36abfac2
MD5 c1ecfb442493acc880535e039546e8dc
BLAKE2b-256 9d6393313993555ed1d0f0fb957681835316d6cb1dd7f200b04e5f40e0468f6c

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 71fc30e25db3887454b93d46fb7a2ea1a6ef8d4f01c20873df9518d34de7aae1
MD5 5f81d8d721b472bf1fda04676bd81639
BLAKE2b-256 07a4e3ef69d10d8bc7fa1d81c475cfdf60db59af5fb72474623b48d09a6805bc

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 39c86a30630ca62f8223feef5ef2b8a173c8e9179ed36b6f2564609503a3cd6b
MD5 2da3eed2b7e4b1e4dc8a7045ae074739
BLAKE2b-256 f61ca05cbbc88ff3f52bd57f252907a1b632ff07ef7026077f4a162051ff51e2

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 885.2 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 2a9da6967f8800c9a1ec5ff4feb04558ad9159ebe2710c0a7204b7617b53d907
MD5 8cd4d185fe0381a71e04ab9f23e4148e
BLAKE2b-256 5989a7c3b603f0fc063849ebb9427a539caa7932f927e07aa0c6f979c8b6d2cc

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp27-cp27m-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 631.8 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 878cb8d9dc4a1105fea172697c89de512975e6f1a1b485096b59ab42f33846c9
MD5 4e912b6fa51efbba0b39911db0ddb42a
BLAKE2b-256 3b6048452663d473df799d5cf71fef5a9b3ff0e11191e758d454006842f12b10

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8b4d23a33bf4fb7a192200964a2aa6cefe0dc716c1c50cbdf98c86664cbd356c
MD5 e3bd888bfa9e43b8b305e53eee17234b
BLAKE2b-256 dad9249df2084a5115463eeecbab995f5e66f48a8320f45430d56bff80d2932c

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 99a46f3607677969f5cd9314657dfd526b5fefd80eb502a44fa0b9d6144f4a74
MD5 92f5c45b08a9f7d085d02c307c85e726
BLAKE2b-256 c9f811cc0b0ccea73c2249dcece00a5d4844eea5fb39cf0b207d5d88df52e6f4

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.1-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.1-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-0.13.1-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a147339ebf799c2128e94ddc26f3585aeacf6c0830a6bf75840e6550b82ab5ee
MD5 bf4f51a995dc86893d71687ab9123025
BLAKE2b-256 d6e19cc8a3fb359aaca41334151d2ec2d98831b50d64b3eb582f9505d7bdff62

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page