Skip to main content

The Boost::Histogram Python wrapper.

Project description

boost-histogram logo

boost-histogram for Python

Actions Status Documentation Status Code style: black

PyPI version Conda-Forge PyPI platforms DOI

GitHub Discussion Gitter Scikit-HEP

Python bindings for Boost::Histogram (source), a C++14 library. This is of the fastest libraries for histogramming, while still providing the power of a full histogram object. See what's new. Powers Hist, an analyst-friendly histogram library.

Installation

You can install this library from PyPI with pip:

python -m pip install boost-histogram

or you can use Conda through conda-forge:

conda install -c conda-forge boost-histogram

All the normal best-practices for Python apply; you should be in a virtual environment, etc.

Usage

import boost_histogram as bh

# Compose axis however you like; this is a 2D histogram
hist = bh.Histogram(
    bh.axis.Regular(2, 0, 1),
    bh.axis.Regular(4, 0.0, 1.0),
)

# Filling can be done with arrays, one per dimension
hist.fill(
    [0.3, 0.5, 0.2], [0.1, 0.4, 0.9]
)

# Numpy array view into histogram counts, no overflow bins
values = hist.values()

Features

  • Many axis types (all support metadata=...)
    • bh.axis.Regular(n, start, stop, ...): Make a regular axis. Options listed below.
      • overflow=False: Turn off overflow bin
      • underflow=False: Turn off underflow bin
      • growth=True: Turn on growing axis, bins added when out-of-range items added
      • circular=True: Turn on wrapping, so that out-of-range values wrap around into the axis
      • transform=bh.axis.transform.Log: Log spacing
      • transform=bh.axis.transform.Sqrt: Square root spacing
      • transform=bh.axis.transform.Pow(v): Power spacing
      • See also the flexible Function transform
    • bh.axis.Integer(start, stop, underflow=True, overflow=True, growth=False): Special high-speed version of regular for evenly spaced bins of width 1
    • bh.axis.Variable([start, edge1, edge2, ..., stop], underflow=True, overflow=True): Uneven bin spacing
    • bh.axis.Category([...], growth=False): Integer or string categories
    • bh.axis.Boolean(): A True/False axis
  • Axis features:
    • .index(value): The index at a point (or points) on the axis
    • .value(index): The value for a fractional bin (or bins) in the axis
    • .bin(i): The bin edges (continuous axis) or a bin value (discrete axis)
    • .centers: The N bin centers (if continuous)
    • .edges: The N+1 bin edges (if continuous)
    • .extent: The number of bins (including under/overflow)
    • .metadata: Anything a user wants to store
    • .traits: The options set on the axis (bh.axis.options)
    • .size: The number of bins (not including under/overflow)
    • .widths: The N bin widths
  • Many storage types
    • bh.storage.Double(): Doubles for weighted values (default)
    • bh.storage.Int64(): 64-bit unsigned integers
    • bh.storage.Unlimited(): Starts small, but can go up to unlimited precision ints or doubles.
    • bh.storage.AtomicInt64(): Threadsafe filling, experimental. Does not support growing axis in threads.
    • bh.storage.Weight(): Stores a weight and sum of weights squared.
    • bh.storage.Mean(): Accepts a sample and computes the mean of the samples (profile).
    • bh.storage.WeightedMean(): Accepts a sample and a weight. It computes the weighted mean of the samples.
  • Accumulators
    • bh.accumulator.Sum: High accuracy sum (Neumaier) - used by the sum method when summing a numerical histogram
    • bh.accumulator.WeightedSum: Tracks a weighted sum and variance
    • bh.accumulator.Mean: Running count, mean, and variance (Welfords's incremental algorithm)
    • bh.accumulator.WeightedMean: Tracks a weighted sum, mean, and variance (West's incremental algorithm)
  • Histogram operations
    • h.ndim: The number of dimensions
    • h.size or len(h): The number of bins
    • +: Add two histograms (storages must match types currently)
    • *=: Multiply by a scaler (not all storages) (hist * scalar and scalar * hist supported too)
    • /=: Divide by a scaler (not all storages) (hist / scalar supported too)
    • .kind: Either bh.Kind.COUNT or bh.Kind.MEAN, depending on storage
    • .sum(flow=False): The total count of all bins
    • .project(ax1, ax2, ...): Project down to listed axis (numbers)
    • .to_numpy(flow=False): Convert to a NumPy style tuple (with or without under/overflow bins)
    • .view(flow=False): Get a view on the bin contents (with or without under/overflow bins)
    • .values(flow=False): Get a view on the values (counts or means, depending on storage)
    • .variances(flow=False): Get the variances if available
    • .counts(flow=False): Get the effective counts for all storage types
    • .reset(): Set counters to 0
    • .empty(flow=False): Check to see if the histogram is empty (can check flow bins too if asked)
    • .copy(deep=False): Make a copy of a histogram
    • .axes: Get the axes as a tuple-like (all properties of axes are available too)
      • .axes[0]: Get the 0th axis
      • .axes.edges: The lower values as a broadcasting-ready array
      • .axes.centers: The centers of the bins broadcasting-ready array
      • .axes.widths: The bin widths as a broadcasting-ready array
      • .axes.metadata: A tuple of the axes metadata
      • .axes.size: A tuple of the axes sizes (size without flow)
      • .axes.extent: A tuple of the axes extents (size with flow)
      • .axes.bin(*args): Returns the bin edges as a tuple of pairs (continuous axis) or values (describe)
      • .axes.index(*args): Returns the bin index at a value for each axis
      • .axes.value(*args): Returns the bin value at an index for each axis
  • Indexing - Supports the Unified Histogram Indexing (UHI) proposal
    • Bin content access / setting
      • v = h[b]: Access bin content by index number
      • v = h[{0:b}]: All actions can be represented by axis:item dictionary instead of by position (mostly useful for slicing)
    • Slicing to get histogram or set array of values
      • h2 = h[a:b]: Access a slice of a histogram, cut portions go to flow bins if present
      • h2 = h[:, ...]: Using : and ... supported just like Numpy
      • h2 = h[::sum]: Third item in slice is the "action"
      • h[...] = array: Set the bin contents, either include or omit flow bins
    • Special accessors
      • bh.loc(v): Supply value in axis coordinates instead of bin number
      • bh.underflow: The underflow bin (use empty beginning on slice for slicing instead)
      • bh.overflow: The overflow bin (use empty end on slice for slicing instead)
    • Special actions (third item in slice)
      • sum: Remove axes via projection; if limits are given, use those
      • bh.rebin(n): Rebin an axis
  • NumPy compatibility
    • bh.numpy provides faster drop in replacements for NumPy histogram functions
    • Histograms follow the buffer interface, and provide .view()
    • Histograms can be converted to NumPy style output tuple with .to_numpy()
  • Details
    • Use bh.Histogram(..., storage=...) to make a histogram (there are several different types)
    • All objects support copy/deepcopy/pickle

Supported platforms

Binaries available:

The easiest way to get boost-histogram is to use a binary wheel, which happens when you run:

python -m pip install boost-histogram

Wheels are produced using cibuildwheel; all common platforms have wheels provided in boost-histogram:

System Arch Python versions PyPy versions
ManyLinux1 (custom GCC 9.2) 32 & 64-bit 2.7, 3.5, 3.6, 3.7, 3.8
ManyLinux2010 32 & 64-bit 2.7, 3.5, 3.6, 3.7, 3.8, 3.9 7.3: 2.7, 3.6, 3.7
ManyLinux2014 ARM64 3.6, 3.7, 3.8, 3.9
macOS 10.9+ 64-bit 2.7, 3.5, 3.6, 3.7, 3.8, 3.9 7.3: 2.7, 3.6, 3.7
macOS Universal2 Arm64 3.9
Windows 32 & 64-bit 2.7, 3.5, 3.6, 3.7, 3.8, 3.9 (32 bit) 7.3: 2.7, 3.6, 3.7
  • manylinux1: Using a custom docker container with GCC 9; should work but can't be called directly other compiled extensions unless they do the same thing (think that's the main caveat). Supporting 32 bits because it's there. Anything running Python 3.9 should be compatible with manylinux2010, so manylinux1 not provided for Python 3.9 (like NumPy).
  • manylinux2010: Requires pip 10+ and a version of Linux newer than 2010.
  • Windows: pybind11 requires compilation with a newer copy of Visual Studio than Python 2.7's Visual Studio 2008; you need to have the Visual Studio 2015 distributable installed (the dll is included in 2017 and 2019, as well).
  • PyPy: Supported on all platforms that cibuildwheel supports, in pypy2, pypy3.6, and pypy3.7 variants.
  • ARM on Linux is supported for newer Python versions via manylinux2014. PowerPC or IBM-Z available on request.
  • macOS Universal2 wheels for Apple Silicon and Intel provided for Python 3.9 (requires Pip 21.0.1).

If you are on a Linux system that is not part of the "many" in manylinux, such as Alpine or ClearLinux, building from source is usually fine, since the compilers on those systems are often quite new. It will just take longer to install when it is using the sdist instead of a wheel.

Conda-Forge

The boost-histogram package is available on Conda-Forge, as well. All supported versions are available with the exception of Python 2.7, which is no longer supported by conda-forge directly.

conda install -c conda-forge boost-histogram

Source builds

For a source build, for example from an "sdist" package, the only requirements are a C++14 compatible compiler. The compiler requirements are dictated by Boost.Histogram's C++ requirements: gcc >= 5.5, clang >= 3.8, msvc >= 14.1. You should have a version of pip less than 2-3 years old (10+).

If you are using Python 2.7 on Windows, you will need to use a recent version of Visual studio and force distutils to use it, or just upgrade to Python 3.6 or newer. Check the pybind11 documentation for more help. On some Linux systems, you may need to use a newer compiler than the one your distribution ships with.

Boost is not required or needed (this only depends on included header-only dependencies). This library is under active development; you can install directly from GitHub if you would like.

python -m pip install git+https://github.com/scikit-hep/boost-histogram.git@develop

Developing

See CONTRIBUTING.md for details on how to set up a development environment.

Contributors

We would like to acknowledge the contributors that made this project possible (emoji key):


Henry Schreiner

🚧 💻 📖

Hans Dembinski

🚧 💻

N!no

⚠️ 📖

Jim Pivarski

🤔

Nicholas Smith

🐛

physicscitizen

🐛

Chanchal Kumar Maji

📖

Doug Davis

🐛

Pierre Grimaud

📖

Beojan Stanislaus

🐛

Popinaodude

🐛

Congqiao Li

🐛

alexander-held

🐛

Chris Burr

📖

Konstantin Gizdov

📦 🐛

This project follows the all-contributors specification.

Talks and other documentation/tutorial sources

The official documentation is here, and includes a quickstart.


Acknowledgements

This library was primarily developed by Henry Schreiner and Hans Dembinski.

Support for this work was provided by the National Science Foundation cooperative agreement OAC-1836650 (IRIS-HEP) and OAC-1450377 (DIANA/HEP). Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

boost_histogram-0.13.2.tar.gz (1.0 MB view details)

Uploaded Source

Built Distributions

boost_histogram-0.13.2-pp37-pypy37_pp73-win32.whl (572.2 kB view details)

Uploaded PyPy Windows x86

boost_histogram-0.13.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-0.13.2-pp36-pypy36_pp73-win32.whl (572.4 kB view details)

Uploaded PyPy Windows x86

boost_histogram-0.13.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.2-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-0.13.2-pp27-pypy_73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.2-pp27-pypy_73-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-0.13.2-cp39-cp39-win_amd64.whl (841.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

boost_histogram-0.13.2-cp39-cp39-win32.whl (571.1 kB view details)

Uploaded CPython 3.9 Windows x86

boost_histogram-0.13.2-cp39-cp39-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.2-cp39-cp39-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

boost_histogram-0.13.2-cp39-cp39-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

boost_histogram-0.13.2-cp39-cp39-macosx_10_9_universal2.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-0.13.2-cp38-cp38-win_amd64.whl (750.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

boost_histogram-0.13.2-cp38-cp38-win32.whl (571.1 kB view details)

Uploaded CPython 3.8 Windows x86

boost_histogram-0.13.2-cp38-cp38-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.2-cp38-cp38-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

boost_histogram-0.13.2-cp38-cp38-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.8

boost_histogram-0.13.2-cp38-cp38-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

boost_histogram-0.13.2-cp37-cp37m-win_amd64.whl (758.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

boost_histogram-0.13.2-cp37-cp37m-win32.whl (581.7 kB view details)

Uploaded CPython 3.7m Windows x86

boost_histogram-0.13.2-cp37-cp37m-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.2-cp37-cp37m-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

boost_histogram-0.13.2-cp37-cp37m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.7m

boost_histogram-0.13.2-cp37-cp37m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

boost_histogram-0.13.2-cp36-cp36m-win_amd64.whl (758.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

boost_histogram-0.13.2-cp36-cp36m-win32.whl (582.2 kB view details)

Uploaded CPython 3.6m Windows x86

boost_histogram-0.13.2-cp36-cp36m-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.2-cp36-cp36m-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

boost_histogram-0.13.2-cp36-cp36m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.6m

boost_histogram-0.13.2-cp36-cp36m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

boost_histogram-0.13.2-cp35-cp35m-win_amd64.whl (758.2 kB view details)

Uploaded CPython 3.5m Windows x86-64

boost_histogram-0.13.2-cp35-cp35m-win32.whl (581.9 kB view details)

Uploaded CPython 3.5m Windows x86

boost_histogram-0.13.2-cp35-cp35m-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

boost_histogram-0.13.2-cp35-cp35m-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

boost_histogram-0.13.2-cp35-cp35m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.5m

boost_histogram-0.13.2-cp35-cp35m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

boost_histogram-0.13.2-cp27-cp27mu-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 2.7mu

boost_histogram-0.13.2-cp27-cp27m-win_amd64.whl (885.4 kB view details)

Uploaded CPython 2.7m Windows x86-64

boost_histogram-0.13.2-cp27-cp27m-win32.whl (632.2 kB view details)

Uploaded CPython 2.7m Windows x86

boost_histogram-0.13.2-cp27-cp27m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 2.7m

boost_histogram-0.13.2-cp27-cp27m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file boost_histogram-0.13.2.tar.gz.

File metadata

  • Download URL: boost_histogram-0.13.2.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2.tar.gz
Algorithm Hash digest
SHA256 afbcb03837ce0d9fdbbed73757ea2df6b813cfbfe2ab7847123f8fd818dcf747
MD5 05d91fcd573bc3abe9b035d58c444c38
BLAKE2b-256 e2046e9557ebe9e04132f09b965fa2354e50853eb58bc8b7bc8e13a0b162fc20

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-pp37-pypy37_pp73-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-pp37-pypy37_pp73-win32.whl
  • Upload date:
  • Size: 572.2 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-pp37-pypy37_pp73-win32.whl
Algorithm Hash digest
SHA256 db19c02a45999533b48aaa53ac3bc211c8a8b6b7b29d63051bd219074c1a3095
MD5 6718a04dc72282e966edbf91b4399c35
BLAKE2b-256 8412232ce80e73ad6e3f0e5ac091dd791f1408fce95a54476d8a74617cdb539d

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ef2c7d863b50cfefa31262d13929e136efadfbd705dd97e81757490fd9bffc22
MD5 36aceb59b5456f45040123c959571a10
BLAKE2b-256 be9909414344d4650bea2405a80e5d60938ba7920cb1e282465ab65b90415892

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-0.13.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 daaa744d1e7384b382f2bdd0625ae7731bbd314a9a8dab17ada3baed467d5f7b
MD5 7db52fed2fc3f66f185e99f7c118ce87
BLAKE2b-256 4dd1a410536a2d43f9943dbfacd29289403dcd9354aae8e1fb50daa4d6f0ab51

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-pp36-pypy36_pp73-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-pp36-pypy36_pp73-win32.whl
  • Upload date:
  • Size: 572.4 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-pp36-pypy36_pp73-win32.whl
Algorithm Hash digest
SHA256 53d7afd514418a4e5d6be5c635d72632cb78e58d038cfc6279972f09bccdeb95
MD5 d1d3007b682c45ca96269f6c6c89acce
BLAKE2b-256 f547c72a6d918a0b920f592f8e2fcc9c40e8d97547ac3d7be670b7be3db1dea6

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d9b674b8a2856ea5e486bbda47978dc27978e9bf7afc833972544b0ac4209b97
MD5 d24976a3f397405fea93243af6051b98
BLAKE2b-256 ef84d49abe53d1621d8f5eff69b6ab3ce1d427b078a1cf74ebf0cdfdfd7376da

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-0.13.2-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ef03a36eb0f73a97d61267faae64350e5c4f3db023da351172880a5062ce6a4c
MD5 f5f2c9c3eda92fc36e6c3e7f2aacf98e
BLAKE2b-256 790fcfed94a35fa1a91186fb3be26ca7ea53b45f15bcbb9cfee4a51e2a1024a7

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 277b0326e1fc4db17bc1f11d817ebebbaa71d227c7e51c90db6f035dbbec7a2b
MD5 677d2f834ac0028ff5b91b3444c1eba6
BLAKE2b-256 72884b09da89a10e153b9f7fee1fc5a2b168131300859c373ec2ce340d5ff666

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-pp27-pypy_73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-pp27-pypy_73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-pp27-pypy_73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a75cc78808f7ec7342b167ab85bcd13279d2b60b543db063baf64dea014a9602
MD5 a0a86941c78961a1b8f16362c1b2ed3d
BLAKE2b-256 743408fe1b6397df5227b3887d19d7db34bd25f170bd1e2940c824e58873e8d7

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 841.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6efb08b8c14f06d31678f24471d65ba4beb40d8e2647bf9829a9ad5c2df0e0fc
MD5 56ebab5bc3d44d03cb86a0a50da61e04
BLAKE2b-256 62e07ad1bcc6ab78f6b004f3e41e77d92c28a1a915375fffc0d4572797ab10bf

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 571.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fa18f68fdc9052076912bb3b17f5669cb798309e3fe850cef234098c59454dca
MD5 de6a4c44aef46349f50f6b44d10bfb59
BLAKE2b-256 ed98fd24af15806371bf40f3421279d2e101dcf934e9e5829979acca09e87173

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2048a31ffc53204aa807af7809e8c47b370f6f1992829e73a0b86e3fd39e6263
MD5 0e507e2fc2e3095f5bfcf20b989a46a9
BLAKE2b-256 0c34f812d1c9ad79a61881924a4491aa59b1bd7e2faaad3f07f9c6eac0dd14cd

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2e1f0b7503db34f511fd6c1bcc1f6ba378d22858600be4f72e62a9ce1dd562a2
MD5 4f1fc8638b54af523c4fdab77c307e49
BLAKE2b-256 fd675720025dc455b4605e50ac6157e2e55d4d6d3447b65a667f980d898dc9a6

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a7c3b496d1e28fc3e4dea8b6c20306d9eea01afd8003584fc961786414fd1c79
MD5 9f457007c9aef73d179f527299a033bd
BLAKE2b-256 5af1e2557b910b3bc8e7f955f6b484f21d3745a636ade200b593a86d96d8c0f2

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e40ff5fe4255b284e689237cd94fd1c0b0fcf16e30c144a4c69cd9bd20b387a
MD5 98ab96c35adb2330c2b03aba3f3dcca6
BLAKE2b-256 1e6589793e49bc050f4fcf49034cbbd57cbf472c79f28394627b0dd9d5dc37df

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 040324f603249989b0ae0593696244c6a7a66d92b143f0e6173e9c82e636f2d1
MD5 639cf4a4d2da3b1202af72634c1e461b
BLAKE2b-256 3e1e40f987f9dd3c3df03c368020a91ad7a2d95f11fe196d8da71f1fe0ad2fa8

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 750.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 de24090dde782265a340b7046128ac3b1339cdce49e5077314599e8205b8bcf4
MD5 16c82b5c48d9ecacd0f5e6f639e051a2
BLAKE2b-256 744cc667ffac557886fa4f74db5d9916591561b32aeebecbae6cb47d560f79e9

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 571.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 dc932cc11d5c05740dd7b88c81b97a54c78a75d250c5599e8e127ef3bbe1d954
MD5 4639fe18fa60685eb0ed9da2c8205520
BLAKE2b-256 373be6afe810402d2fe874b6cc9ab41dd51d9191a30015a3b4a4446115ce8eff

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 95d3ea8b728430bebc2ef4c516a1645e8b84d4b953a83bd2997b1dc16422b29e
MD5 f123830c080122527f30410d349f361a
BLAKE2b-256 72b0c9f9591e09fb2d1bce1666e0fafa2c130f128b4ef41e26873753b7bd0f48

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 000337f6cc535fc1c5ae3396c60533f1c09796edfb3493c734d160e84a78ce4c
MD5 f122be099d20e4209f64a6539da811ff
BLAKE2b-256 63c1a6bf7030f02ebd8a5a768ea1ca5f029fb20ef71bf2a5409458048bf5f63c

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a46431d81c8782162cf812ad1528999b6b8272114f37f9596b0603be2b37fdba
MD5 423e679866537e0b32463e43336a9d64
BLAKE2b-256 fe4f7e24d9e3facbaa0fdc08acf369dbe281787c37769edb79ccffc8a8daa6b1

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 112e8f0c13b295852668a39447b6904b142cb8b560b518483f74695bfd4fd5f8
MD5 3a851de25e082a3c9e49f823d8a43191
BLAKE2b-256 57e63b9afb26073d3b316bf5096fe5fbb7d05e4610efa3ef0781dd7cedf81ed5

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 af702b598b53d490b52e015fdc282cf2aadfcfae44615b7445247e27adce1d07
MD5 9861773a2106442703d1440a577ecb73
BLAKE2b-256 da492988e0349e46a70e7ca7fbc3d9d2ba673f948b875005f6a7bc44b54c16f7

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 14063a49437a9b77e6bae8096540412ad9a32d478b9c6be036a9c122bd1447bb
MD5 e03e0f3e0db2df52f98531673aed2ddc
BLAKE2b-256 b26542054f108d72a41584d368f1d4387b954ddce5395fb1176e9129fd031d9a

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 758.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 823397ee9e059f677d336be3a1c041af98e1ba9cf2763bc896c3d75e981030d5
MD5 6d3a26c108b490900a9fe6d760d16620
BLAKE2b-256 99c863dfc09f73d9e7f25ec53c84876a452538235ca7725bc44a69b9693b4ea4

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 581.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 e93ca3ec61523a7a859243ae9543c31e98d67aa0caa2094f35682771dfd172db
MD5 8075bc624d572706f8e12eadd7b8757b
BLAKE2b-256 756c86d4eddf60b045e55a17b4085a564a41ac61b1a20df52b2500941d7ca88f

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-0.13.2-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 90ef75be622b8aae66e1ca322df2425c4344ec5cce2f7aedd25f238fa87dc655
MD5 bb08d0155b81094f016090cd9fa14b0f
BLAKE2b-256 82cf3883d492363439cd285faec83f3762d317c4a03eb17b23ac8cfdbe66548d

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2e52b876f711dd31a66e07e397f1cf7ce92d0f50f895dec5513b5c65e6e6ae07
MD5 a90396eb003cc5ebfc1acd16f9a32b95
BLAKE2b-256 e3c8e70ce030571a06ab0de86b3caf27315ba79e749c0cf8d997a445edce15b2

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8b22fc1d791af8330843c93eafa5b42bdf8c2b067882bade7b4f5a0bd42b78fb
MD5 e4f587b64f04f547a407b91b22f6f69e
BLAKE2b-256 6f7143859f6cc5fadaaa0578e085c425dd80bda22a40db74091c9345ce5a4a6e

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 be6d497f7b196d2a13e8f7a1d6bbd283d8274ab97fffeb8b552640667edbb6d0
MD5 127eb0e1453ab1cb806d5b871b01a759
BLAKE2b-256 ec2671a0906043b9aa39ff10f54aa2995f3f75436f538bca7a63c995c5fbb33b

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8a88a08b07c5514b749cf047d2c91b6df17429aa154cd9403571a0c131e48888
MD5 9564cb91b8d2be67ca3e0d67a7109513
BLAKE2b-256 547e751acf7fa9bb3d30895328cc73484c8d591690c48d71360b5ed1bab43ebf

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d0c53f9dc5c45871d3b25d1ade8744c7fefe68a1937ec84b327ba3dc28bea273
MD5 9c151c4a6137362dedfd2beaa776c1e2
BLAKE2b-256 eeb85dcc798395096f06ace997965ae9f43121d0fdb8959a859fe773c8058f48

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 758.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1f802cb3ead886e59e774a7969b4bc6b8a41c19d516308b07adbcb81be446519
MD5 f1527c9f73cb491525d0182f8799c3e6
BLAKE2b-256 472de70affca7d865720c91bccb0ce475791825c5ed8874ef05cdf18f44a0536

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 582.2 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 7ed0efc6f80652721e94d2efd089bd8987213d640a3a5a80944f5d4f8a00c325
MD5 2b5dcc366b3ce78f1402d4dba5ccb6d0
BLAKE2b-256 466ced41aa6883fd7884d0505415c7a7648296ba1091c2597ba060a88edb7350

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-0.13.2-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3bed89b0ca466528b7fdefeb179ae86e5180ad6bd1d770c44547e311dd0d0148
MD5 07078c425e5427e22cd35fb4be87d4bf
BLAKE2b-256 fad2b2359e828213aba31fffe595cc268eec0e0ef77e6bdcd31ab9ed84ca80ed

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1ded521cb8a6bb93cf50c393989541edf398c68d3cd4654dc84869080d2eea34
MD5 beb54b299f1dde9eb727fb5acf5fe7b5
BLAKE2b-256 aeb7b97ec0297edbce43559055afc414b0d5a1f488a4edbf15452df8f1dfc4d8

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e062d2bdfa5390d40c5b99047af420129cf851cd9364ce32e3d7b20257a14666
MD5 45d1abf1254fefe1ca460e60498352dd
BLAKE2b-256 4209ad0bc35a63289c958b05651f69e4242b040da463484088031786436b1b69

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2f0a7930e18076088b1ac092c370b1f6c6b96335e6c27e855df3eb73e622a3b0
MD5 61d769e216da5d37cd5a7c3d100e776f
BLAKE2b-256 c9e505d057802f79dd943f010d71dfe85a75262183eb0fd20f04f3d2d7b84e53

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 aa8358ba1b001a69a70f67ae450322037e57f2b50f6c3cc0ea886cce808d2dd4
MD5 29761a3c61b93ee0e4419188a875f995
BLAKE2b-256 0a3c75859d63824bf8774916d7220c15a5bb8fc08f6552778760900344d612a3

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 38664511d06fda78e317da6742abc0f979f96da93be8e0fd9207e4381fb503b1
MD5 d6a2d242e21afca6bb7ea42fed53f13c
BLAKE2b-256 cb5e091b9ae8ee552fd47b4fc87aaf4712a1670ce1a99d4fe286b4ba8698fff5

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 758.2 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 4a349e2b4a6b043940853faadb1a81809993a69a0aa6db637ef01c0ff7bad54b
MD5 cfd685a2c517df8c2c612aab58dee8c0
BLAKE2b-256 0bcf29f9983fef5a8988e622d6125c0a36ee7fcd242d05da4175d281aef5ffbe

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp35-cp35m-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 581.9 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 bf1b9939fc1c78a266d1aa13a81f3c7431b205ab19d50c471a96da1f264bb9e6
MD5 47a2f4f6a8913ae6e2ff619246a4a889
BLAKE2b-256 62d2ca4a5964d33e5bdedb37a1727d01c689090c4fba1b7713433843214e7d99

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 885cb2de210d28ebe85c2b649d4f6d97a098debbad337d0d198cb675522c9746
MD5 437dbe2e6878b1543177225730314627
BLAKE2b-256 356144d48b96bf3ad9ddc935339e8e074cd1d7978dc193b6a6d579021acb7cbd

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 dbc0fd9b9310b8c8920253f56da3e44b6c538c3547ab5a36de4d0970452b9aa3
MD5 82371c2e4d2df5b4294a3d5369a96ab6
BLAKE2b-256 7659a0bc3ab6c8bb1d18dc553e19b070d692a878fbedffbf723df690e8def321

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 876b0a0a6100bfd4e7d00f1c4480ca956f5c1e8c274ad4df1c8ee2baaf32c41d
MD5 e46b00a7f142b42b1f1fa6487e3991c0
BLAKE2b-256 19ea568c87750000a86c5c1e5236466e4bc74f37007cc43e880e07916bc9d962

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b1bd6b15dbb3c52dc734d94f75cc376623abd7671481ef80d3f23cb887580b02
MD5 ac733f121e83c739a9e51735eefcdb1b
BLAKE2b-256 001724e65dec0b4e024217efcc06918b9e2a81bfb881861ddaee6ffad8861513

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6ee38863b40e8d8906728da017f399b691b59a48609aed2d3e1dca9a68a21383
MD5 663f1a1697dcf7d966404d4cc5b1bd5d
BLAKE2b-256 1f9525f714718947ad3970f0df25b13b2f8668397a883b3a7675f3c40dd2064c

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c2fdbf6237741bed75b98da34b3c26ff7f51da94fe7069494f6b590bb9124ae2
MD5 617dd218dbf52aad2d575522e3c87dc1
BLAKE2b-256 efbe3adf4f420eb53cc9be1a811a640942014b900bd55fbc3f2e01f0f4b3ca66

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f6e258847dfe319d37e8d4adea450af4ff58926e6823664325efa05ae1d7a8b5
MD5 b6ef68b8be22b00c743622d0654e7bd5
BLAKE2b-256 2890ce0f8c86afdb208cbe06e103cf60165296489991f9255792fb31417a9c8c

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 885.4 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 d16796288979f00355d22eb828afe591e6dbf549cce2c50bb8dc50efeb011459
MD5 5ebf2686353a20f4d77f8205034627f4
BLAKE2b-256 228db7a8a7e20df18539ec899886141d40c6b7f80a048eacdada34efa13d6b76

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp27-cp27m-win32.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 632.2 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 4364200247eec2213ace55d2e9512d064213905c31b3477024f21d661f21f1c8
MD5 250764cd304b62ffb18f6e859416dc33
BLAKE2b-256 675294fc1b894742db29c5dad3a2ad68cc812116159eed81fc8691d6452de2d7

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 69cf164286a2098f3e71f825de559660bc1974dddcf9e466dcb151b2a13fa74e
MD5 af772c5baf1ecf504842710db041bde5
BLAKE2b-256 c8185b2edc8ce608007efe0231d3130e527a1c50df277324ee04deb434ad552a

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d9adbf1cccceaf9d5af7e303860210ae49b511d2b9eb9dffc2ea0f86a4143489
MD5 adc789bc33e074f3462207e4d1a408f7
BLAKE2b-256 6ff1b544476e5a9a72a1c24dbba11b768861162a039ff48b75abb9da531e5223

See more details on using hashes here.

File details

Details for the file boost_histogram-0.13.2-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-0.13.2-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-0.13.2-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4e54e05c988edb5cdf45a3810c3c59cdc46e25ea0ee42f80c4e56559806ae959
MD5 f7fe5b7765b1f1acaead7f13a1d1d20c
BLAKE2b-256 66b9eac70f2aa62a89851c5b8e6339dabd81d1b01b9aa82e7c9dd483e6638a63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page