Skip to main content

The Boost::Histogram Python wrapper.

Project description

boost-histogram logo

boost-histogram for Python

Actions Status Documentation Status Code style: black

PyPI version Conda-Forge PyPI platforms DOI

GitHub Discussion Gitter Scikit-HEP

Python bindings for Boost::Histogram (source), a C++14 library. This is of the fastest libraries for histogramming, while still providing the power of a full histogram object. See what's new.

For end users interested in analysis, see Hist, a first-party analyst-friendly histogram library that extends boost-histogram with named axes, many new shortcuts including UHI+, plotting shortcuts, and more.

Usage

Slideshow of features. See expandable text below if the image is not readable.

Text intro (click to expand)
import boost_histogram as bh

# Compose axis however you like; this is a 2D histogram
hist = bh.Histogram(
    bh.axis.Regular(2, 0, 1),
    bh.axis.Regular(4, 0.0, 1.0),
)

# Filling can be done with arrays, one per dimension
hist.fill(
    [0.3, 0.5, 0.2],
    [0.1, 0.4, 0.9],
)

# Numpy array view into histogram counts, no overflow bins
values = hist.values()

# Make a new histogram with just the second axis, summing over the first, and
# rebinning the second into larger bins:
h2 = hist[::sum, ::bh.rebin(2)]

We support the uhi PlottableHistogram protocol, so boost-histogram/Hist histograms can be plotted via any compatible library, such as mplhep.

Cheatsheet

Simplified list of features (click to expand)
  • Many axis types (all support metadata=...)
    • bh.axis.Regular(n, start, stop, ...): Make a regular axis. Options listed below.
      • overflow=False: Turn off overflow bin
      • underflow=False: Turn off underflow bin
      • growth=True: Turn on growing axis, bins added when out-of-range items added
      • circular=True: Turn on wrapping, so that out-of-range values wrap around into the axis
      • transform=bh.axis.transform.Log: Log spacing
      • transform=bh.axis.transform.Sqrt: Square root spacing
      • transform=bh.axis.transform.Pow(v): Power spacing
      • See also the flexible Function transform
    • bh.axis.Integer(start, stop, *, underflow=True, overflow=True, growth=False, circular=False): Special high-speed version of regular for evenly spaced bins of width 1
    • bh.axis.Variable([start, edge1, edge2, ..., stop], *, underflow=True, overflow=True, circular=False): Uneven bin spacing
    • bh.axis.IntCategory([...], *, growth=False): Integer categories
    • bh.axis.StrCategory([...], *, growth=False): String categories
    • bh.axis.Boolean(): A True/False axis
  • Axis features:
    • .index(value): The index at a point (or points) on the axis
    • .value(index): The value for a fractional bin (or bins) in the axis
    • .bin(i): The bin edges (continuous axis) or a bin value (discrete axis)
    • .centers: The N bin centers (if continuous)
    • .edges: The N+1 bin edges (if continuous)
    • .extent: The number of bins (including under/overflow)
    • .metadata: Anything a user wants to store
    • .traits: The options set on the axis
    • .size: The number of bins (not including under/overflow)
    • .widths: The N bin widths
  • Many storage types
    • bh.storage.Double(): Doubles for weighted values (default)
    • bh.storage.Int64(): 64-bit unsigned integers
    • bh.storage.Unlimited(): Starts small, but can go up to unlimited precision ints or doubles.
    • bh.storage.AtomicInt64(): Threadsafe filling, experimental. Does not support growing axis in threads.
    • bh.storage.Weight(): Stores a weight and sum of weights squared.
    • bh.storage.Mean(): Accepts a sample and computes the mean of the samples (profile).
    • bh.storage.WeightedMean(): Accepts a sample and a weight. It computes the weighted mean of the samples.
  • Accumulators
    • bh.accumulator.Sum: High accuracy sum (Neumaier) - used by the sum method when summing a numerical histogram
    • bh.accumulator.WeightedSum: Tracks a weighted sum and variance
    • bh.accumulator.Mean: Running count, mean, and variance (Welfords's incremental algorithm)
    • bh.accumulator.WeightedMean: Tracks a weighted sum, mean, and variance (West's incremental algorithm)
  • Histogram operations
    • h.ndim: The number of dimensions
    • h.size or len(h): The number of bins
    • +: Add two histograms (storages must match types currently)
    • *=: Multiply by a scaler (not all storages) (hist * scalar and scalar * hist supported too)
    • /=: Divide by a scaler (not all storages) (hist / scalar supported too)
    • .kind: Either bh.Kind.COUNT or bh.Kind.MEAN, depending on storage
    • .sum(flow=False): The total count of all bins
    • .project(ax1, ax2, ...): Project down to listed axis (numbers). Can also reorder axes.
    • .to_numpy(flow=False, view=False): Convert to a NumPy style tuple (with or without under/overflow bins)
    • .view(flow=False): Get a view on the bin contents (with or without under/overflow bins)
    • .values(flow=False): Get a view on the values (counts or means, depending on storage)
    • .variances(flow=False): Get the variances if available
    • .counts(flow=False): Get the effective counts for all storage types
    • .reset(): Set counters to 0
    • .empty(flow=False): Check to see if the histogram is empty (can check flow bins too if asked)
    • .copy(deep=False): Make a copy of a histogram
    • .axes: Get the axes as a tuple-like (all properties of axes are available too)
      • .axes[0]: Get the 0th axis
      • .axes.edges: The lower values as a broadcasting-ready array
      • .axes.centers: The centers of the bins broadcasting-ready array
      • .axes.widths: The bin widths as a broadcasting-ready array
      • .axes.metadata: A tuple of the axes metadata
      • .axes.size: A tuple of the axes sizes (size without flow)
      • .axes.extent: A tuple of the axes extents (size with flow)
      • .axes.bin(*args): Returns the bin edges as a tuple of pairs (continuous axis) or values (describe)
      • .axes.index(*args): Returns the bin index at a value for each axis
      • .axes.value(*args): Returns the bin value at an index for each axis
  • Indexing - Supports UHI Indexing
    • Bin content access / setting
      • v = h[b]: Access bin content by index number
      • v = h[{0:b}]: All actions can be represented by axis:item dictionary instead of by position (mostly useful for slicing)
    • Slicing to get histogram or set array of values
      • h2 = h[a:b]: Access a slice of a histogram, cut portions go to flow bins if present
      • h2 = h[:, ...]: Using : and ... supported just like Numpy
      • h2 = h[::sum]: Third item in slice is the "action"
      • h[...] = array: Set the bin contents, either include or omit flow bins
    • Special accessors
      • bh.loc(v): Supply value in axis coordinates instead of bin number
      • bh.underflow: The underflow bin (use empty beginning on slice for slicing instead)
      • bh.overflow: The overflow bin (use empty end on slice for slicing instead)
    • Special actions (third item in slice)
      • sum: Remove axes via projection; if limits are given, use those
      • bh.rebin(n): Rebin an axis
  • NumPy compatibility
    • bh.numpy provides faster drop in replacements for NumPy histogram functions
    • Histograms follow the buffer interface, and provide .view()
    • Histograms can be converted to NumPy style output tuple with .to_numpy()
  • Details
    • All objects support copy/deepcopy/pickle
    • Fully statically typed, tested with MyPy.

Installation

You can install this library from PyPI with pip:

python3 -m pip install boost-histogram

All the normal best-practices for Python apply; Pip should not be very old (Pip 9 is very old), you should be in a virtual environment, etc. Python 3.6+ is required; for older versions of Python (3.5 and 2.7), 0.13 will be installed instead, which is API equivalent to 1.0, but will not be gaining new features.

Binaries available:

The easiest way to get boost-histogram is to use a binary wheel, which happens when you run the above command on a supported platform. Wheels are produced using cibuildwheel; all common platforms have wheels provided in boost-histogram:

System Arch Python versions PyPy versions
ManyLinux1 (custom GCC 9.2) 32 & 64-bit 3.6, 3.7, 3.8
ManyLinux2010 32 & 64-bit 3.6, 3.7, 3.8, 3.9 7.3: 3.6, 3.7
ManyLinux2014 ARM64 3.6, 3.7, 3.8, 3.9
macOS 10.9+ 64-bit 3.6, 3.7, 3.8, 3.9 7.3: 3.6, 3.7
macOS Universal2 Arm64 3.9
Windows 32 & 64-bit 3.6, 3.7, 3.8, 3.9 (32 bit) 7.3: 3.6, 3.7
  • manylinux1: Using a custom docker container with GCC 9 to produce. Anything running Python 3.9 should be compatible with manylinux2010, so manylinux1 not provided for Python 3.9 (like NumPy).
  • manylinux2010: Requires pip 10+.
  • PyPy 7.3.x: Supported for both pypy3.6 and pypy3.7 variants on all platforms.
  • ARM on Linux is supported for newer Python versions via manylinux2014. PowerPC or IBM-Z available on request, or manylinux_2_24.
  • macOS Universal2 wheels for Apple Silicon and Intel provided for Python 3.9 (requires Pip 21.0.1).

If you are on a Linux system that is not part of the "many" in manylinux, such as Alpine or ClearLinux, building from source is usually fine, since the compilers on those systems are often quite new. It will just take longer to install when it is using the sdist instead of a wheel. All dependencies are header-only and included.

Conda-Forge

The boost-histogram package is available on conda-forge, as well. All supported variants are available.

conda install -c conda-forge boost-histogram

Source builds

For a source build, for example from an "SDist" package, the only requirements are a C++14 compatible compiler. The compiler requirements are dictated by Boost.Histogram's C++ requirements: gcc >= 5.5, clang >= 3.8, or msvc >= 14.1. You should have a version of pip less than 2-3 years old (10+).

Boost is not required or needed (this only depends on included header-only dependencies). You can install directly from GitHub if you would like.

python -m pip install git+https://github.com/scikit-hep/boost-histogram.git@develop

Developing

See CONTRIBUTING.md for details on how to set up a development environment.

Contributors

We would like to acknowledge the contributors that made this project possible (emoji key):


Henry Schreiner

🚧 💻 📖

Hans Dembinski

🚧 💻

N!no

⚠️ 📖

Jim Pivarski

🤔

Nicholas Smith

🐛

physicscitizen

🐛

Chanchal Kumar Maji

📖

Doug Davis

🐛

Pierre Grimaud

📖

Beojan Stanislaus

🐛

Popinaodude

🐛

Congqiao Li

🐛

alexander-held

🐛

Chris Burr

📖

Konstantin Gizdov

📦 🐛

This project follows the all-contributors specification.

Talks and other documentation/tutorial sources

The official documentation is here, and includes a quickstart.


Acknowledgements

This library was primarily developed by Henry Schreiner and Hans Dembinski.

Support for this work was provided by the National Science Foundation cooperative agreement OAC-1836650 (IRIS-HEP) and OAC-1450377 (DIANA/HEP). Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

boost_histogram-1.0.1.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

boost_histogram-1.0.1-pp37-pypy37_pp73-win32.whl (570.1 kB view details)

Uploaded PyPy Windows x86

boost_histogram-1.0.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

boost_histogram-1.0.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-1.0.1-pp36-pypy36_pp73-win32.whl (569.5 kB view details)

Uploaded PyPy Windows x86

boost_histogram-1.0.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

boost_histogram-1.0.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-1.0.1-cp39-cp39-win_amd64.whl (827.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

boost_histogram-1.0.1-cp39-cp39-win32.whl (567.7 kB view details)

Uploaded CPython 3.9 Windows x86

boost_histogram-1.0.1-cp39-cp39-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

boost_histogram-1.0.1-cp39-cp39-macosx_10_9_universal2.whl (2.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.0.1-cp38-cp38-win_amd64.whl (743.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

boost_histogram-1.0.1-cp38-cp38-win32.whl (567.6 kB view details)

Uploaded CPython 3.8 Windows x86

boost_histogram-1.0.1-cp38-cp38-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.8

boost_histogram-1.0.1-cp38-cp38-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

boost_histogram-1.0.1-cp37-cp37m-win_amd64.whl (753.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

boost_histogram-1.0.1-cp37-cp37m-win32.whl (578.0 kB view details)

Uploaded CPython 3.7m Windows x86

boost_histogram-1.0.1-cp37-cp37m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.7m

boost_histogram-1.0.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

boost_histogram-1.0.1-cp36-cp36m-win_amd64.whl (753.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

boost_histogram-1.0.1-cp36-cp36m-win32.whl (577.9 kB view details)

Uploaded CPython 3.6m Windows x86

boost_histogram-1.0.1-cp36-cp36m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.6m

boost_histogram-1.0.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file boost_histogram-1.0.1.tar.gz.

File metadata

  • Download URL: boost_histogram-1.0.1.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1.tar.gz
Algorithm Hash digest
SHA256 142d82ce0dfc97a98ccd6f498f91b45de33249c143c7263d690d78227ea1c77a
MD5 ee8c4ac1c1f841faa57170df1d418bfa
BLAKE2b-256 07074a58094ee42ee9a4982b414a83d261ba3046a05cf37c4976927f7699f51e

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-pp37-pypy37_pp73-win32.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-pp37-pypy37_pp73-win32.whl
  • Upload date:
  • Size: 570.1 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-pp37-pypy37_pp73-win32.whl
Algorithm Hash digest
SHA256 2c1eb03fd5c3640fdde6aca2c9c51e5b2ed9542fcb21da21f89e6eb6223b7d26
MD5 fcbf0033259a14dd1368a84496d69504
BLAKE2b-256 e33bdc97bd1392338102a7b30c90cf6f523651b2fee5b58e287977807a23e876

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 286cdf311394f081a9319e2ebab683791ca5cb75d946ec94805dd37e05ccbbe6
MD5 8038292842d244927807505cdf5d7306
BLAKE2b-256 6c180c7cca6d72a4f0fe257b8c6a4c22f02cdf4e13f5aa582a0bc461f1e5a2e7

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1f15ae93bf38e007b97bf383f1459acfa4857c066a80ca5b63f758e4c6dbfc7e
MD5 a0522d1b4aefa0d43c2315922251b58d
BLAKE2b-256 b9fd9eb87c7886e0b5c7bd38900684b16059184a07e16dd159e7804f05c5b0ce

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-pp36-pypy36_pp73-win32.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-pp36-pypy36_pp73-win32.whl
  • Upload date:
  • Size: 569.5 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-pp36-pypy36_pp73-win32.whl
Algorithm Hash digest
SHA256 c6960b3a0379fb8f34b4a57fe2d80d9ab159652bd0e61d8b33e2ad899c082aa5
MD5 5c506f72aa56d9b9ae5fde18de4d6b8a
BLAKE2b-256 a82966993bd57b9789a82d7d80d15011909d884ecac2cb0114cad158e3360199

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b96adae56159a240976fe8405d4ab66c055eff09d890d9be4f2c04c2b0500d15
MD5 fcae1e591bcbee164fca8e2db0ad12f6
BLAKE2b-256 0e4fe6ff987b12f818dc7e91ecc871ad7c19575843886f787c01eab50b254d3a

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2431b806f47c14bcf3797e13d3c52cef5244b15b363882e46b595c2f3fe4025f
MD5 dc725314df27cae84d5c424e22ddffc9
BLAKE2b-256 46cb0fac5c897dbf3901c102dec5794ffb619b515aadd322e0bad430d7321589

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 827.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9d40847e2d7ab8ebf0b1b9ae811ae05e3daead9074de47c4800fc10a3d3a6ce6
MD5 1dffc01b5cc81f40264e7617d5bbf612
BLAKE2b-256 d6acb47970d77c7cc40b6c54cd904fb6994fa7a6daf0b214510f5777d6ed9cf2

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 567.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d94f6ab055c15085de5109a80f0d11a6d2184330ee8b1b39a2f3d8fd08b1b8c6
MD5 79bacfd1425f3f803d92a793dd5237a2
BLAKE2b-256 6419bacd978e77bf9c318957a394179460ae34242eee58a4c8040630c6dd7a56

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ad962d7ad69c13a9687a279c482ab752e2f6c30b94127e795e40546cdafa4475
MD5 cc67fff0101362f1e626628f0e70cb44
BLAKE2b-256 ed71a43fac0dbc100f12ec2fb3a81ec6dec1b13a455e0e44973ea251efe86c85

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c0fe532b69bc6711254f34da9e2dbd9539e8d208cc64ac7bf4a4f33c7c13876c
MD5 6a27a2fcb63af61a889bfc23c5a612bb
BLAKE2b-256 d5434ecf394c3e17118481a7006c1025133d68ff922bb92412f2f6d036d2776b

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ce8c2632263931c71642661d366ff6b3df65c053907a17b65b6657fc90f62b3e
MD5 0bec29e9d38cc5bf70704200af99b97c
BLAKE2b-256 d5d446105474caee9f4187443ec8359257f044f35e9917963bf84a222ff57580

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 743.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 85ba98c13c556929b5917e4be799b743f10119a7c640365a6a8fb9bf429b2abf
MD5 1ad69cd817a91f22c03891e992b1ff49
BLAKE2b-256 ffeef0adf3735ee74a3287b924917b39b88de0009f20bd4e1d8300564d0d28cd

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 567.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5c4f5bbd2ba1996e8532747a59a0fc9efa936f6a1b2a67da63e41fd3c4aedd94
MD5 95506f1cd76080b6c87105b3d5c60d0d
BLAKE2b-256 d8df3076e7539ce1e25f2dc5526c44520e647155f576c76d78f1884b76a363c2

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9053a22e0d58cf0f061889de891fd3f6065f408df177247b0fb0406576a2b7ca
MD5 b6b4880d83cfbeacc9b29ca82854d662
BLAKE2b-256 72fe87dc0a1ac4673c74edcb988eb78cd4816fad6e51997b9986040e0b26e458

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8808ebefaa839dd8ecb422502d93be4df873037b996477820780da57096a0c07
MD5 c72b2281991150ccb7d3477bf7891ae8
BLAKE2b-256 18955be85c81b66875ebf6c02b757c28ec6c271127e74c435601aaf517eb9a17

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 68c485f8657f71fa8c8da5e2ed9dd1744a64512279ca78965ace97cac3016ebd
MD5 80d9777784238ac8e7a5dc487e3907d7
BLAKE2b-256 e5e7c74f4c6c8bd5ec2cafa31bc29f551fa55742da8e4dab037df2f23db938a2

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f587690ef351d9027c7070acdaabaf5e3eb7ea0bd6cf6fa4b7ade378c1099ae8
MD5 250c0b72e79b4dd9e1ee84e75154a31b
BLAKE2b-256 5ecbe5f16fcaf78c206e18bfb55efeab11da0f0346c17e178e6cc45ff26352cb

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 753.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 737d35ed6916e9569cfbb0caf995e4b3e7b644a5c9114e5ec2836c42f940c814
MD5 8db01df79a9ff339263f36f72e60354c
BLAKE2b-256 ff0ab04101fc0bba5fe9998e3225ee9f3a16001a3e4dc89c58e142beb98ff942

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 578.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 681760632eea7f086fbe7fdd667dbb119925ce26634c7b88c9fa2ea83d943f88
MD5 4e31f83c108cd9a8c79d49cacbfdb267
BLAKE2b-256 c8e621ab05214884657fea16bc47bbe358bcf12629eeb63db7899ed0ff29a0e4

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff0efaa7334cd92a6287247695e495d02c03f62eec044de3f08e84dc43406c20
MD5 902d2776f0af8742788602ede0fb7b33
BLAKE2b-256 567aa91d4b9e904ca1e50a9ab752670bc5d81c3e73b441cbd2ee564a98a2a03e

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5f34de29bce52ffa7f6870780519af8ec06418173e5a50fb9b737c2d986dbfa1
MD5 f71767af4a60d121d951dfbc4fbc12a4
BLAKE2b-256 6b13ecb75a3d7bb29aa90918d69063b42c04eae7921647be0050332813d6e417

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8e6824d845a5488c535ba9dac197f22d78d41a8b18e5c73fac98e9e722f005e4
MD5 9dca342ed1ad2fb5ad9b7adc4582326e
BLAKE2b-256 176267bbbc2d673ad061efe8d45f7ed0f4c022d51a1e598ba13c9a3a1ed46718

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a4d796a899504b3b4a44365680a67bf5afd18cf89b0c9210c8a9194b813bc140
MD5 f036cceb79bcdf5ff0a0a913f7a3f680
BLAKE2b-256 c5802657eb66515e1f24c086e06ecd92c37db02d8e5f422ae01151027ce9c08f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 753.7 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 91d33b956e8e8c4a2ce5d6be8ab7ab2e8477ecad765fa9d52377ca7139871181
MD5 cb65dfd7a503df8d8dee632bb0cca3e3
BLAKE2b-256 10761a09779762504ffa89d339894b1c005cb88219461aa97cccbd68c1eab158

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 577.9 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 d76b48a33078979051e305f78c8e78bac840eb97b4b3fb0b4e63106f487ac2c4
MD5 cddb3653aec1edcdf6eae7f6ab1c8de6
BLAKE2b-256 f9d6b342d808adf09d88e2405ff14ffd657549d04442a861838f5a9e3ef11a35

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7f26e456d65df491ea4abacb005a5ad86b74a781f446b93d8aae23806f5a35ca
MD5 04a30f56aae2ffee36df7ebdd42fd2a9
BLAKE2b-256 f8a16b9c6cfd6742d5086428696f7a334d46a9db9e7f9df6e7e4d26285ed468f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 47251db0b3d6b62f405876b454adf6cb0ed21844172ba000e8750765a412116d
MD5 a85fb4cdd321fa38dd1dd8048b6a9c55
BLAKE2b-256 84865687426ea7292fe72314cc0f8a34e3e2d1d5fe96e4a93b8bb894a44c3af9

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9bbe57ab1b7718047b55454e14114ed8c579dc5adac413963249e96ce1ec3243
MD5 2dcd1ea4b41f34840a5150441ed446e6
BLAKE2b-256 cc6266ed6d5d77a623ca3226ebd19ba4c5be6db9d9a2413561bf548b0368d1a6

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for boost_histogram-1.0.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a8e19eba0c4a48c0f1811b63c501825c5f64aded4bf85b6ec194e89ec8e7da8f
MD5 f7114c019fe0bd0a98c52d6f067d5353
BLAKE2b-256 615f401bfe097b0e9a37cc6673ba6a0e158bb0febf89cd8181fd857bc5a78373

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page