Skip to main content

The Boost::Histogram Python wrapper.

Project description

boost-histogram logo

boost-histogram for Python

Actions Status Documentation Status Code style: black

PyPI version Conda-Forge PyPI platforms DOI

GitHub Discussion Gitter Scikit-HEP

Python bindings for Boost::Histogram (source), a C++14 library. This is of the fastest libraries for histogramming, while still providing the power of a full histogram object. See what's new.

For end users interested in analysis, see Hist, a first-party analyst-friendly histogram library that extends boost-histogram with named axes, many new shortcuts including UHI+, plotting shortcuts, and more.

Usage

Slideshow of features. See expandable text below if the image is not readable.

Text intro (click to expand)
import boost_histogram as bh

# Compose axis however you like; this is a 2D histogram
hist = bh.Histogram(
    bh.axis.Regular(2, 0, 1),
    bh.axis.Regular(4, 0.0, 1.0),
)

# Filling can be done with arrays, one per dimension
hist.fill(
    [0.3, 0.5, 0.2],
    [0.1, 0.4, 0.9],
)

# Numpy array view into histogram counts, no overflow bins
values = hist.values()

# Make a new histogram with just the second axis, summing over the first, and
# rebinning the second into larger bins:
h2 = hist[::sum, ::bh.rebin(2)]

We support the uhi PlottableHistogram protocol, so boost-histogram/Hist histograms can be plotted via any compatible library, such as mplhep.

Cheatsheet

Simplified list of features (click to expand)
  • Many axis types (all support metadata=...)
    • bh.axis.Regular(n, start, stop, ...): Make a regular axis. Options listed below.
      • overflow=False: Turn off overflow bin
      • underflow=False: Turn off underflow bin
      • growth=True: Turn on growing axis, bins added when out-of-range items added
      • circular=True: Turn on wrapping, so that out-of-range values wrap around into the axis
      • transform=bh.axis.transform.Log: Log spacing
      • transform=bh.axis.transform.Sqrt: Square root spacing
      • transform=bh.axis.transform.Pow(v): Power spacing
      • See also the flexible Function transform
    • bh.axis.Integer(start, stop, *, underflow=True, overflow=True, growth=False, circular=False): Special high-speed version of regular for evenly spaced bins of width 1
    • bh.axis.Variable([start, edge1, edge2, ..., stop], *, underflow=True, overflow=True, circular=False): Uneven bin spacing
    • bh.axis.IntCategory([...], *, growth=False): Integer categories
    • bh.axis.StrCategory([...], *, growth=False): String categories
    • bh.axis.Boolean(): A True/False axis
  • Axis features:
    • .index(value): The index at a point (or points) on the axis
    • .value(index): The value for a fractional bin (or bins) in the axis
    • .bin(i): The bin edges (continuous axis) or a bin value (discrete axis)
    • .centers: The N bin centers (if continuous)
    • .edges: The N+1 bin edges (if continuous)
    • .extent: The number of bins (including under/overflow)
    • .metadata: Anything a user wants to store
    • .traits: The options set on the axis
    • .size: The number of bins (not including under/overflow)
    • .widths: The N bin widths
  • Many storage types
    • bh.storage.Double(): Doubles for weighted values (default)
    • bh.storage.Int64(): 64-bit unsigned integers
    • bh.storage.Unlimited(): Starts small, but can go up to unlimited precision ints or doubles.
    • bh.storage.AtomicInt64(): Threadsafe filling, experimental. Does not support growing axis in threads.
    • bh.storage.Weight(): Stores a weight and sum of weights squared.
    • bh.storage.Mean(): Accepts a sample and computes the mean of the samples (profile).
    • bh.storage.WeightedMean(): Accepts a sample and a weight. It computes the weighted mean of the samples.
  • Accumulators
    • bh.accumulator.Sum: High accuracy sum (Neumaier) - used by the sum method when summing a numerical histogram
    • bh.accumulator.WeightedSum: Tracks a weighted sum and variance
    • bh.accumulator.Mean: Running count, mean, and variance (Welfords's incremental algorithm)
    • bh.accumulator.WeightedMean: Tracks a weighted sum, mean, and variance (West's incremental algorithm)
  • Histogram operations
    • h.ndim: The number of dimensions
    • h.size or len(h): The number of bins
    • +: Add two histograms (storages must match types currently)
    • *=: Multiply by a scaler (not all storages) (hist * scalar and scalar * hist supported too)
    • /=: Divide by a scaler (not all storages) (hist / scalar supported too)
    • .kind: Either bh.Kind.COUNT or bh.Kind.MEAN, depending on storage
    • .sum(flow=False): The total count of all bins
    • .project(ax1, ax2, ...): Project down to listed axis (numbers). Can also reorder axes.
    • .to_numpy(flow=False, view=False): Convert to a NumPy style tuple (with or without under/overflow bins)
    • .view(flow=False): Get a view on the bin contents (with or without under/overflow bins)
    • .values(flow=False): Get a view on the values (counts or means, depending on storage)
    • .variances(flow=False): Get the variances if available
    • .counts(flow=False): Get the effective counts for all storage types
    • .reset(): Set counters to 0
    • .empty(flow=False): Check to see if the histogram is empty (can check flow bins too if asked)
    • .copy(deep=False): Make a copy of a histogram
    • .axes: Get the axes as a tuple-like (all properties of axes are available too)
      • .axes[0]: Get the 0th axis
      • .axes.edges: The lower values as a broadcasting-ready array
      • .axes.centers: The centers of the bins broadcasting-ready array
      • .axes.widths: The bin widths as a broadcasting-ready array
      • .axes.metadata: A tuple of the axes metadata
      • .axes.size: A tuple of the axes sizes (size without flow)
      • .axes.extent: A tuple of the axes extents (size with flow)
      • .axes.bin(*args): Returns the bin edges as a tuple of pairs (continuous axis) or values (describe)
      • .axes.index(*args): Returns the bin index at a value for each axis
      • .axes.value(*args): Returns the bin value at an index for each axis
  • Indexing - Supports UHI Indexing
    • Bin content access / setting
      • v = h[b]: Access bin content by index number
      • v = h[{0:b}]: All actions can be represented by axis:item dictionary instead of by position (mostly useful for slicing)
    • Slicing to get histogram or set array of values
      • h2 = h[a:b]: Access a slice of a histogram, cut portions go to flow bins if present
      • h2 = h[:, ...]: Using : and ... supported just like Numpy
      • h2 = h[::sum]: Third item in slice is the "action"
      • h[...] = array: Set the bin contents, either include or omit flow bins
    • Special accessors
      • bh.loc(v): Supply value in axis coordinates instead of bin number
      • bh.underflow: The underflow bin (use empty beginning on slice for slicing instead)
      • bh.overflow: The overflow bin (use empty end on slice for slicing instead)
    • Special actions (third item in slice)
      • sum: Remove axes via projection; if limits are given, use those
      • bh.rebin(n): Rebin an axis
  • NumPy compatibility
    • bh.numpy provides faster drop in replacements for NumPy histogram functions
    • Histograms follow the buffer interface, and provide .view()
    • Histograms can be converted to NumPy style output tuple with .to_numpy()
  • Details
    • All objects support copy/deepcopy/pickle
    • Fully statically typed, tested with MyPy.

Installation

You can install this library from PyPI with pip:

python3 -m pip install boost-histogram

All the normal best-practices for Python apply; Pip should not be very old (Pip 9 is very old), you should be in a virtual environment, etc. Python 3.6+ is required; for older versions of Python (3.5 and 2.7), 0.13 will be installed instead, which is API equivalent to 1.0, but will not be gaining new features.

Binaries available:

The easiest way to get boost-histogram is to use a binary wheel, which happens when you run the above command on a supported platform. Wheels are produced using cibuildwheel; all common platforms have wheels provided in boost-histogram:

System Arch Python versions PyPy versions
ManyLinux1 (custom GCC 9.2) 32 & 64-bit 3.6, 3.7, 3.8
ManyLinux2010 32 & 64-bit 3.6, 3.7, 3.8, 3.9 7.3: 3.6, 3.7
ManyLinux2014 ARM64 3.6, 3.7, 3.8, 3.9
macOS 10.9+ 64-bit 3.6, 3.7, 3.8, 3.9 7.3: 3.6, 3.7
macOS Universal2 Arm64 3.9
Windows 32 & 64-bit 3.6, 3.7, 3.8, 3.9 (32 bit) 7.3: 3.6, 3.7
  • manylinux1: Using a custom docker container with GCC 9 to produce. Anything running Python 3.9 should be compatible with manylinux2010, so manylinux1 not provided for Python 3.9 (like NumPy).
  • manylinux2010: Requires pip 10+.
  • PyPy 7.3.x: Supported for both pypy3.6 and pypy3.7 variants on all platforms.
  • ARM on Linux is supported for newer Python versions via manylinux2014. PowerPC or IBM-Z available on request, or manylinux_2_24.
  • macOS Universal2 wheels for Apple Silicon and Intel provided for Python 3.9 (requires Pip 21.0.1).

If you are on a Linux system that is not part of the "many" in manylinux, such as Alpine or ClearLinux, building from source is usually fine, since the compilers on those systems are often quite new. It will just take longer to install when it is using the sdist instead of a wheel. All dependencies are header-only and included.

Conda-Forge

The boost-histogram package is available on conda-forge, as well. All supported variants are available.

conda install -c conda-forge boost-histogram

Source builds

For a source build, for example from an "SDist" package, the only requirements are a C++14 compatible compiler. The compiler requirements are dictated by Boost.Histogram's C++ requirements: gcc >= 5.5, clang >= 3.8, or msvc >= 14.1. You should have a version of pip less than 2-3 years old (10+).

Boost is not required or needed (this only depends on included header-only dependencies). You can install directly from GitHub if you would like.

python -m pip install git+https://github.com/scikit-hep/boost-histogram.git@develop

Developing

See CONTRIBUTING.md for details on how to set up a development environment.

Contributors

We would like to acknowledge the contributors that made this project possible (emoji key):


Henry Schreiner

🚧 💻 📖

Hans Dembinski

🚧 💻

N!no

⚠️ 📖

Jim Pivarski

🤔

Nicholas Smith

🐛

physicscitizen

🐛

Chanchal Kumar Maji

📖

Doug Davis

🐛

Pierre Grimaud

📖

Beojan Stanislaus

🐛

Popinaodude

🐛

Congqiao Li

🐛

alexander-held

🐛

Chris Burr

📖

Konstantin Gizdov

📦 🐛

This project follows the all-contributors specification.

Talks and other documentation/tutorial sources

The official documentation is here, and includes a quickstart.


Acknowledgements

This library was primarily developed by Henry Schreiner and Hans Dembinski.

Support for this work was provided by the National Science Foundation cooperative agreement OAC-1836650 (IRIS-HEP) and OAC-1450377 (DIANA/HEP). Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

boost_histogram-1.0.2.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

boost_histogram-1.0.2-pp37-pypy37_pp73-win32.whl (569.9 kB view details)

Uploaded PyPy Windows x86

boost_histogram-1.0.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

boost_histogram-1.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-1.0.2-pp36-pypy36_pp73-win32.whl (569.4 kB view details)

Uploaded PyPy Windows x86

boost_histogram-1.0.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

boost_histogram-1.0.2-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-1.0.2-cp39-cp39-win_amd64.whl (827.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

boost_histogram-1.0.2-cp39-cp39-win32.whl (568.1 kB view details)

Uploaded CPython 3.9 Windows x86

boost_histogram-1.0.2-cp39-cp39-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

boost_histogram-1.0.2-cp39-cp39-macosx_10_9_universal2.whl (2.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.0.2-cp38-cp38-win_amd64.whl (744.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

boost_histogram-1.0.2-cp38-cp38-win32.whl (567.8 kB view details)

Uploaded CPython 3.8 Windows x86

boost_histogram-1.0.2-cp38-cp38-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.8

boost_histogram-1.0.2-cp38-cp38-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

boost_histogram-1.0.2-cp37-cp37m-win_amd64.whl (754.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

boost_histogram-1.0.2-cp37-cp37m-win32.whl (578.3 kB view details)

Uploaded CPython 3.7m Windows x86

boost_histogram-1.0.2-cp37-cp37m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.7m

boost_histogram-1.0.2-cp37-cp37m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

boost_histogram-1.0.2-cp36-cp36m-win_amd64.whl (753.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

boost_histogram-1.0.2-cp36-cp36m-win32.whl (578.0 kB view details)

Uploaded CPython 3.6m Windows x86

boost_histogram-1.0.2-cp36-cp36m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.6m

boost_histogram-1.0.2-cp36-cp36m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file boost_histogram-1.0.2.tar.gz.

File metadata

  • Download URL: boost_histogram-1.0.2.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2.tar.gz
Algorithm Hash digest
SHA256 b79cb9a00c5b8e44ff24ffcbec0ce5d3048dd1570c8592066344b6d2f2369fa2
MD5 ecfa0c341d04759837f6e95d2a5283c1
BLAKE2b-256 91721d6b6404f2e325b62b7a8e0a6e7e53041ff093ed08ba0e593935a17119da

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-pp37-pypy37_pp73-win32.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-pp37-pypy37_pp73-win32.whl
  • Upload date:
  • Size: 569.9 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-pp37-pypy37_pp73-win32.whl
Algorithm Hash digest
SHA256 a1860d5a48fa2be11afc2281adbb88275c55283c21e11affb0a9e4687aafe375
MD5 81b4acb74deee9609387129d82fee406
BLAKE2b-256 70cf5282ad66adb11e964ca609d458f7fd121a37999624803a0929be09933c1c

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a8a6de1bc0f55f3c037f08795637b04e6d317f1d732d48da192804a033fe58a6
MD5 9f3824f5fe0fd52be42a4c51085f71b4
BLAKE2b-256 c1d8095de2552b01197440707a2b28ab4b5690552afe50683d34b88387b712e5

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 375987136dfdca9949fb4653406fe12f1dd6f50159ba25cb808ed6e0bdbe643e
MD5 2cc2c0af787b945c2d0bb68b82ba5bd4
BLAKE2b-256 8ecaae0ecf8d5b54d4721e39e653297333f75b0a03f6c5f4493edc3143c79017

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-pp36-pypy36_pp73-win32.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-pp36-pypy36_pp73-win32.whl
  • Upload date:
  • Size: 569.4 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-pp36-pypy36_pp73-win32.whl
Algorithm Hash digest
SHA256 973dd33d72c54cdda919e3e6c99bb13e0b1caaf14b72b1f474d174227197545f
MD5 db392c8ae94e32a948bdec014d68e852
BLAKE2b-256 3898a8544343d424dc97033c9067489fb06f7a5de0e9a621e7f4d6802c6fefcc

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bf49db6cae6cf7e31c99cf5b75d16caf85b97d8095eb850cfbcfbb3d1c8088cc
MD5 dcdb56d502ddc4be6a02e5eb291f13df
BLAKE2b-256 bef93aac93b2cb383f968024cde6935c7bcb20b59623026c9a94fa0eb4b4b318

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c40e2608057477bc716c78ab6a691da0001ce90fb2b03544e2add4237609090
MD5 3b78fba6eba7dcf7c9cfe5261195c606
BLAKE2b-256 0672ed327970586909305a7359c944b20e12607a99e63cc117481077771509f0

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 827.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3149db0f60129e0e5cc1bfbd56acb4abd2d4ffe34c00bbe18203fe64fd3eef3f
MD5 782fdff5a16436b888834c5b6db8f6f4
BLAKE2b-256 964c57923afe54d073c906c9086e4b29018aec5e5e567952cb0611ae2bb60a74

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 568.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c2913ccaa56517a2a3cce8607c378556eea28ddb2aca3ea54229226dbbb8aa8b
MD5 df95a9b4482258d0421d391a4c35146a
BLAKE2b-256 e7176bce9ac28946ea397c55d490d9d32260ddc58db8767705f7c77607b6f10b

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f2cac7d6f00843d84a9fddeefc986faffc7907725e7d851f966df7862adbff0c
MD5 3d081f7d61f464aa3e651aa87269d3dd
BLAKE2b-256 3fc1465cad610e1c8768b843df67aa5c3cd56fe3f0c1bf3301ed800a03256a3a

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3ededec0d4ddcdcccec0583723b276d238129d4470f209d0ab103e1bd89c10df
MD5 c2542f299ac994aef1cbf8988079a943
BLAKE2b-256 46b521739440fecf2c9fe2e68b4ebf6bea5c51afebb79a6cd5fc5e651cbeded7

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 872cff8cb33a9c406ee0dca36b855615a0780ba00bff28635ce7038a6e9aa7f3
MD5 f58fab527ab60e7a643e85e4996ad3cc
BLAKE2b-256 9a57b6cca78a1fe01457585e2afdd96869912badf3db0a01bbbf57df40329389

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 744.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c88705b7866c0355d8771c58335b1e8e4746eb36e4b1897ca649bb6a97e4392c
MD5 b7f8c3e67a6df82a9e408e8463f9442d
BLAKE2b-256 910a74ec01868233a966d201edcd82bc8272375c9627dd94f07314c90824c2b8

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 567.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 74068f9789e6040e138c9d124b76143ce54853e7b23008511e966d6ab6c607fc
MD5 f54e4863c0d3848209421a27fad27378
BLAKE2b-256 8ecc388262a3b3f50d18b396a3afe7d38abe8107e8cf54643e02f602bad306c2

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 730d3b5f5e08c4b173f9d9e1e1990824dc7ce2bf16946c6a9394b888ecfb7e23
MD5 78272719a9240792538baa233d96b5de
BLAKE2b-256 59a8c392881642f5f1bbea43eeb0e908c87a1c0c3826c5bd3d0c670e7e140d24

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bebe85150a15cf89e814da7aef70929ac06a8cbdbf6f171423086a45361ca7ea
MD5 6386556881107f5dd4d74489131115ad
BLAKE2b-256 89f2cbd3592b69b151bd9e20d538fc21c35b0d321b84d3a96864a537c1e43491

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 65146723eaab418b37b90a15e8eaf3bd2a718a36b2eb87c25c7a7166a2a5d151
MD5 428a0634afdd56ac54c8e07273a9f7ad
BLAKE2b-256 9407c76fb741342a324f953992cc6b244f1d5448f5dade28704c744d656edf20

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b4a0af1a3f5ac08937e6a8f5d92ab1464d8fcf121af68ad746f1d371a4efac0a
MD5 9935a5bf0683e90fa15805605c08bdc2
BLAKE2b-256 9522c4ca5a328b20317b147936cfe904d670f4076ff32e58e3150bdacb22edc0

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 754.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fda5b3593e37b2cbae3784478139b76775915562ed2c97e1c95a5673aadce7fe
MD5 2be3e61fd9dd90da4c2131346aeca711
BLAKE2b-256 296c54bfb4ec3ce7137325c2fe91f7cf6b34bcf8c57a8762da978347a03878ec

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 578.3 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 675ab9ee4a31ea7b0058fc8aa491c2f264cf880c3b5972b3654311c59e7d362d
MD5 032dfb1a0b534b4cd3e5f454433bd4df
BLAKE2b-256 47d33fd8c075a52e84caa349dae5a1d5e09f885c6e223238494b502b9d43cc19

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 06a428cf75583768f6acbec760c665cce680c39dd17bbd9226a9ac9adda08699
MD5 da3704abf656f39e1b52cc9e557fde39
BLAKE2b-256 a56c215255894cc78aaea1f1eac21755d68ae52063eb75fbef11fbd2ef590b86

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 90d99ea9d88a2dd6595610868dff6bb542244b8996e7145509bfe4208ef47209
MD5 6a64eb4826e42d845fe60eb73239a8da
BLAKE2b-256 fd3db42a7a9ba4b39fc7cce19fe57844df0c347dbcedd9774cb690cc7c7593fe

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c980fdc56a96b8b8308fda84133e36409400baf5f26b966f528f0961f96e2472
MD5 9aadfbdb2d7565d6e8646ba4cdb4d0f1
BLAKE2b-256 2cab0654f4e5e6e9f538f40e3cb2142e59282011f7f72ab23d456df6d7b58f9c

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 977c0bff6bea81b148fc727615806d866eba33489e2f5c6e86e0af891e03bd5d
MD5 c5f648afd2a0179f11d62a3f6eeece95
BLAKE2b-256 cd7164e8c08e8cd104c533ac27142e97916db6578355aeda0a30ecc32088e063

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 753.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e1e73dbb00a35938801a012c15c0c82e6a342fab5d9b25b15227d679a963265b
MD5 9dda10a10dc021d00fdf34641a4c4ae8
BLAKE2b-256 266e8684b130b4eca4a14cd921e1fcb22e2fa0b20a8fb76503b3163103060855

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 578.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 2ec3c27524d61d74f54dd67026d335de2920b0c577ee47c9cf92a999785a49c4
MD5 c608bb9a682ab28e36d57e35e669b07e
BLAKE2b-256 b9d7406aef49769b72c6d191460e5a88bd1ad264ea542b90b495b6d6d20ade4a

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 de356eccc631dc66a3d1b6bc6330303c21daf180fa1510011bd510967fb38b6f
MD5 10cb188b728f10d8e6dbe79b89da4953
BLAKE2b-256 980aab6d80615a6e86ecb9b4775c71971564ebd299c47f4b7a2424a265b4522a

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ba4355bba2628eda1265d924740b6a0323ffbe053ca5c2592a51b1394988f5a5
MD5 05674b6ba448f3dbcb2d069162f7ca4c
BLAKE2b-256 896003cdc719d5570a13321765a411df5967ffe736684446b12f0566b09ff3bc

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b90faa79ecb64e10a9803c059059a33531e46b0851041ddda57da3855a606991
MD5 8f29b2fcd452fcf2cf51884e7fddfb70
BLAKE2b-256 a0ee19d9343aaa2fd8a78f4cc00bc855f64a1310aa50bc4210013474924736eb

See more details on using hashes here.

File details

Details for the file boost_histogram-1.0.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.0.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for boost_histogram-1.0.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a032601be97a4dfc49cd7d1229b1fcd81b82b15e0bac7cd7aec64de75ba60759
MD5 16435505333dbea81f02db2ad93b8f9e
BLAKE2b-256 eda7844b7e31932dd19b7fbd051e4cd25b93d2eb080860e9a6114898648ec1ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page