Skip to main content

The Boost::Histogram Python wrapper.

Project description

boost-histogram logo

boost-histogram for Python

Actions Status Documentation Status Code style: black

PyPI version Conda-Forge PyPI platforms DOI

GitHub Discussion Gitter Scikit-HEP

Python bindings for Boost::Histogram (source), a C++14 library. This is one of the fastest libraries for histogramming, while still providing the power of a full histogram object. See what's new.

For end users interested in analysis, see Hist, a first-party analyst-friendly histogram library that extends boost-histogram with named axes, many new shortcuts including UHI+, plotting shortcuts, and more.

Usage

Slideshow of features. See expandable text below if the image is not readable.

Text intro (click to expand)
import boost_histogram as bh

# Compose axis however you like; this is a 2D histogram
hist = bh.Histogram(
    bh.axis.Regular(2, 0, 1),
    bh.axis.Regular(4, 0.0, 1.0),
)

# Filling can be done with arrays, one per dimension
hist.fill(
    [0.3, 0.5, 0.2],
    [0.1, 0.4, 0.9],
)

# Numpy array view into histogram counts, no overflow bins
values = hist.values()

# Make a new histogram with just the second axis, summing over the first, and
# rebinning the second into larger bins:
h2 = hist[::sum, ::bh.rebin(2)]

We support the uhi PlottableHistogram protocol, so boost-histogram/Hist histograms can be plotted via any compatible library, such as mplhep.

Cheatsheet

Simplified list of features (click to expand)
  • Many axis types (all support metadata=...)
    • bh.axis.Regular(n, start, stop, ...): Make a regular axis. Options listed below.
      • overflow=False: Turn off overflow bin
      • underflow=False: Turn off underflow bin
      • growth=True: Turn on growing axis, bins added when out-of-range items added
      • circular=True: Turn on wrapping, so that out-of-range values wrap around into the axis
      • transform=bh.axis.transform.Log: Log spacing
      • transform=bh.axis.transform.Sqrt: Square root spacing
      • transform=bh.axis.transform.Pow(v): Power spacing
      • See also the flexible Function transform
    • bh.axis.Integer(start, stop, *, underflow=True, overflow=True, growth=False, circular=False): Special high-speed version of regular for evenly spaced bins of width 1
    • bh.axis.Variable([start, edge1, edge2, ..., stop], *, underflow=True, overflow=True, circular=False): Uneven bin spacing
    • bh.axis.IntCategory([...], *, growth=False): Integer categories
    • bh.axis.StrCategory([...], *, growth=False): String categories
    • bh.axis.Boolean(): A True/False axis
  • Axis features:
    • .index(value): The index at a point (or points) on the axis
    • .value(index): The value for a fractional bin (or bins) in the axis
    • .bin(i): The bin edges (continuous axis) or a bin value (discrete axis)
    • .centers: The N bin centers (if continuous)
    • .edges: The N+1 bin edges (if continuous)
    • .extent: The number of bins (including under/overflow)
    • .metadata: Anything a user wants to store
    • .traits: The options set on the axis
    • .size: The number of bins (not including under/overflow)
    • .widths: The N bin widths
  • Many storage types
    • bh.storage.Double(): Doubles for weighted values (default)
    • bh.storage.Int64(): 64-bit unsigned integers
    • bh.storage.Unlimited(): Starts small, but can go up to unlimited precision ints or doubles.
    • bh.storage.AtomicInt64(): Threadsafe filling, experimental. Does not support growing axis in threads.
    • bh.storage.Weight(): Stores a weight and sum of weights squared.
    • bh.storage.Mean(): Accepts a sample and computes the mean of the samples (profile).
    • bh.storage.WeightedMean(): Accepts a sample and a weight. It computes the weighted mean of the samples.
  • Accumulators
    • bh.accumulator.Sum: High accuracy sum (Neumaier) - used by the sum method when summing a numerical histogram
    • bh.accumulator.WeightedSum: Tracks a weighted sum and variance
    • bh.accumulator.Mean: Running count, mean, and variance (Welfords's incremental algorithm)
    • bh.accumulator.WeightedMean: Tracks a weighted sum, mean, and variance (West's incremental algorithm)
  • Histogram operations
    • h.ndim: The number of dimensions
    • h.size or len(h): The number of bins
    • +: Add two histograms (storages must match types currently)
    • *=: Multiply by a scaler (not all storages) (hist * scalar and scalar * hist supported too)
    • /=: Divide by a scaler (not all storages) (hist / scalar supported too)
    • .kind: Either bh.Kind.COUNT or bh.Kind.MEAN, depending on storage
    • .sum(flow=False): The total count of all bins
    • .project(ax1, ax2, ...): Project down to listed axis (numbers). Can also reorder axes.
    • .to_numpy(flow=False, view=False): Convert to a NumPy style tuple (with or without under/overflow bins)
    • .view(flow=False): Get a view on the bin contents (with or without under/overflow bins)
    • .values(flow=False): Get a view on the values (counts or means, depending on storage)
    • .variances(flow=False): Get the variances if available
    • .counts(flow=False): Get the effective counts for all storage types
    • .reset(): Set counters to 0
    • .empty(flow=False): Check to see if the histogram is empty (can check flow bins too if asked)
    • .copy(deep=False): Make a copy of a histogram
    • .axes: Get the axes as a tuple-like (all properties of axes are available too)
      • .axes[0]: Get the 0th axis
      • .axes.edges: The lower values as a broadcasting-ready array
      • .axes.centers: The centers of the bins broadcasting-ready array
      • .axes.widths: The bin widths as a broadcasting-ready array
      • .axes.metadata: A tuple of the axes metadata
      • .axes.size: A tuple of the axes sizes (size without flow)
      • .axes.extent: A tuple of the axes extents (size with flow)
      • .axes.bin(*args): Returns the bin edges as a tuple of pairs (continuous axis) or values (describe)
      • .axes.index(*args): Returns the bin index at a value for each axis
      • .axes.value(*args): Returns the bin value at an index for each axis
  • Indexing - Supports UHI Indexing
    • Bin content access / setting
      • v = h[b]: Access bin content by index number
      • v = h[{0:b}]: All actions can be represented by axis:item dictionary instead of by position (mostly useful for slicing)
    • Slicing to get histogram or set array of values
      • h2 = h[a:b]: Access a slice of a histogram, cut portions go to flow bins if present
      • h2 = h[:, ...]: Using : and ... supported just like Numpy
      • h2 = h[::sum]: Third item in slice is the "action"
      • h[...] = array: Set the bin contents, either include or omit flow bins
    • Special accessors
      • bh.loc(v): Supply value in axis coordinates instead of bin number
      • bh.underflow: The underflow bin (use empty beginning on slice for slicing instead)
      • bh.overflow: The overflow bin (use empty end on slice for slicing instead)
    • Special actions (third item in slice)
      • sum: Remove axes via projection; if limits are given, use those
      • bh.rebin(n): Rebin an axis
  • NumPy compatibility
    • bh.numpy provides faster drop in replacements for NumPy histogram functions
    • Histograms follow the buffer interface, and provide .view()
    • Histograms can be converted to NumPy style output tuple with .to_numpy()
  • Details
    • All objects support copy/deepcopy/pickle
    • Fully statically typed, tested with MyPy.

Installation

You can install this library from PyPI with pip:

python3 -m pip install boost-histogram

All the normal best-practices for Python apply; Pip should not be very old (Pip 9 is very old), you should be in a virtual environment, etc. Python 3.6+ is required; for older versions of Python (3.5 and 2.7), 0.13 will be installed instead, which is API equivalent to 1.0, but will not be gaining new features.

Binaries available:

The easiest way to get boost-histogram is to use a binary wheel, which happens when you run the above command on a supported platform. Wheels are produced using cibuildwheel; all common platforms have wheels provided in boost-histogram:

System Arch Python versions PyPy versions
ManyLinux1 (custom GCC 9.2) 32 & 64-bit 3.6, 3.7, 3.8
ManyLinux2010 32 & 64-bit 3.6, 3.7, 3.8, 3.9 7.3: 3.6, 3.7
ManyLinux2014 ARM64 3.6, 3.7, 3.8, 3.9
macOS 10.9+ 64-bit 3.6, 3.7, 3.8, 3.9 7.3: 3.6, 3.7
macOS Universal2 Arm64 3.9
Windows 32 & 64-bit 3.6, 3.7, 3.8, 3.9 (32 bit) 7.3: 3.6, 3.7
  • manylinux1: Using a custom docker container with GCC 9 to produce. Anything running Python 3.9 should be compatible with manylinux2010, so manylinux1 not provided for Python 3.9 (like NumPy).
  • manylinux2010: Requires pip 10+.
  • PyPy 7.3.x: Supported for both pypy3.6 and pypy3.7 variants on all platforms.
  • ARM on Linux is supported for newer Python versions via manylinux2014. PowerPC or IBM-Z available on request, or manylinux_2_24.
  • macOS Universal2 wheels for Apple Silicon and Intel provided for Python 3.9 (requires Pip 21.0.1).

If you are on a Linux system that is not part of the "many" in manylinux, such as Alpine or ClearLinux, building from source is usually fine, since the compilers on those systems are often quite new. It will just take longer to install when it is using the sdist instead of a wheel. All dependencies are header-only and included.

Conda-Forge

The boost-histogram package is available on conda-forge, as well. All supported variants are available.

conda install -c conda-forge boost-histogram

Source builds

For a source build, for example from an "SDist" package, the only requirements are a C++14 compatible compiler. The compiler requirements are dictated by Boost.Histogram's C++ requirements: gcc >= 5.5, clang >= 3.8, or msvc >= 14.1. You should have a version of pip less than 2-3 years old (10+).

Boost is not required or needed (this only depends on included header-only dependencies). You can install directly from GitHub if you would like.

python -m pip install git+https://github.com/scikit-hep/boost-histogram.git@develop

Developing

See CONTRIBUTING.md for details on how to set up a development environment.

Contributors

We would like to acknowledge the contributors that made this project possible (emoji key):


Henry Schreiner

🚧 💻 📖

Hans Dembinski

🚧 💻

N!no

⚠️ 📖

Jim Pivarski

🤔

Nicholas Smith

🐛

physicscitizen

🐛

Chanchal Kumar Maji

📖

Doug Davis

🐛

Pierre Grimaud

📖

Beojan Stanislaus

🐛

Popinaodude

🐛

Congqiao Li

🐛

alexander-held

🐛

Chris Burr

📖

Konstantin Gizdov

📦 🐛

Kyle Cranmer

📖

This project follows the all-contributors specification.

Talks and other documentation/tutorial sources

The official documentation is here, and includes a quickstart.


Acknowledgements

This library was primarily developed by Henry Schreiner and Hans Dembinski.

Support for this work was provided by the National Science Foundation cooperative agreement OAC-1836650 (IRIS-HEP) and OAC-1450377 (DIANA/HEP). Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

boost_histogram-1.1.0.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

boost_histogram-1.1.0-pp37-pypy37_pp73-win_amd64.whl (745.4 kB view details)

Uploaded PyPy Windows x86-64

boost_histogram-1.1.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

boost_histogram-1.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-1.1.0-cp39-cp39-win_amd64.whl (829.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

boost_histogram-1.1.0-cp39-cp39-win32.whl (568.9 kB view details)

Uploaded CPython 3.9 Windows x86

boost_histogram-1.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

boost_histogram-1.1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

boost_histogram-1.1.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

boost_histogram-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

boost_histogram-1.1.0-cp39-cp39-macosx_10_9_universal2.whl (2.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.1.0-cp38-cp38-win_amd64.whl (745.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

boost_histogram-1.1.0-cp38-cp38-win32.whl (568.7 kB view details)

Uploaded CPython 3.8 Windows x86

boost_histogram-1.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

boost_histogram-1.1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

boost_histogram-1.1.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (5.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

boost_histogram-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

boost_histogram-1.1.0-cp38-cp38-macosx_10_9_universal2.whl (2.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.1.0-cp37-cp37m-win_amd64.whl (755.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

boost_histogram-1.1.0-cp37-cp37m-win32.whl (578.5 kB view details)

Uploaded CPython 3.7m Windows x86

boost_histogram-1.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

boost_histogram-1.1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

boost_histogram-1.1.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (5.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

boost_histogram-1.1.0-cp37-cp37m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.7m

boost_histogram-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

boost_histogram-1.1.0-cp36-cp36m-win_amd64.whl (755.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

boost_histogram-1.1.0-cp36-cp36m-win32.whl (578.3 kB view details)

Uploaded CPython 3.6m Windows x86

boost_histogram-1.1.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

boost_histogram-1.1.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

boost_histogram-1.1.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (5.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

boost_histogram-1.1.0-cp36-cp36m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.6m

boost_histogram-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file boost_histogram-1.1.0.tar.gz.

File metadata

  • Download URL: boost_histogram-1.1.0.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0.tar.gz
Algorithm Hash digest
SHA256 370e8e44a0bac4ebbedb7e62570be3a75a7a3807a297d6e82a94301b4681fc22
MD5 4a4804b78e31d640a3b3403d9070b2be
BLAKE2b-256 88fcc1c61d704089bae0a6d29edcf785406eaa279032a0a343a4b9070e9f075a

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 745.4 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 586d940d81dd7ffb83e8740d58d3923237872b2f6761e00a79ba3b68dfc091ed
MD5 03adf85e852392334ebc46352ad3ec5a
BLAKE2b-256 bf674abc53be6e7a9d4bf7307303fb85de4766286350405e41cbe0cf56cdd901

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.1.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3e929e12b6ed3775764f655df42c6777aa012daaeb4461b15a9b461a2ceadd5d
MD5 5f7cd8f352f139dc63a12646ad3efe66
BLAKE2b-256 e6e101a580137ca1c788955515b547c53ab242049833b381324825f55dab0bb7

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 df964a45e141608fa2e77861a747e486ac8b95e48f32f8058954923d60bed576
MD5 abe7719e16983750fd4ab437036961c5
BLAKE2b-256 7570f89c0da174b4c387858384fa84b70fe5a9be4d467b176a13dad37a8ec8d3

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 829.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 668e82e5e4090c3ee898de8c6a22017fdaa40f3729e5973ce1b577ec486e2a8c
MD5 95ae091f9532f4f668a811c618cab997
BLAKE2b-256 c22d1bb1864916f94c5f0c7c3da66897f1f85f7af7a686d49e026a7752cb6cc5

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 568.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d4c9e0d99fcbdff1b0136740b6ace3b976b82701233c83a8256e278cada3de50
MD5 99bc9051ea222233d54c40bb00907f08
BLAKE2b-256 91f3ea73a991a67f0a8d2513b50b9d6a288618343cfe730303042ae72189b520

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 31c28b8285e4b4dc9ba7d07e741d83eab159e71d86ac0b5cbc82074769fd42ff
MD5 0d4349defedd68f4429fdc534a414433
BLAKE2b-256 9731a13d76b915d89901b01dcee65d9e3acd9b65e4cda78fbb4afeebc46a895b

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 adc6ca6aa7843bdae5402c6a98e097f42fcba69f9096f980bf50c431f0d4cde1
MD5 e2bb4135f9d6ac826544be4bd74c17a7
BLAKE2b-256 90a27fd1f3a66d89f4f643244c3a5635f58fdf7b838129cce07a7906bd6a4ced

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for boost_histogram-1.1.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b7af64961d484f8a8ef2ec621fb36d7c36781ced2a184bec6c6b1c6534d9f36f
MD5 8247a921e18355e3a8ce601ba131216b
BLAKE2b-256 a1088a45d52c107f62336d994dff570eece8d4d0fc0e91a02df1e987f9ba4f10

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e37a0007aebd1c51f7f66dfc78ef04ca983ca2cec9a2a432cae3ffc0dacabc14
MD5 b85c27ca3b3f432ca8600049c4c3dca4
BLAKE2b-256 22583de0fc8136c6c143770a3d44a42eb055c571e7f5d8e163925b185fa77f01

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b2e5d9b364c0e41bdb73937c28511925163e1540c990430d140ed5c5bfca8001
MD5 e7e27f8a17db46ee7b90eacf8d47067b
BLAKE2b-256 19861121b725a0ddc53b6d9205f530f7a4092970c2c95a47c11d0d8462633b0f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 745.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 75019eed2bc7a148ef0c42aedab277285ef4f10346b4fcfd09aa2c2d798f64de
MD5 44793c50adf92edb7e17bcf238d17a6f
BLAKE2b-256 7f0fc39ec006b49428aa12c117c61bcb897c5d5dc359c0e3852801ea31ab6028

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 568.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d21599f7da9c8ca4ce2cb623d8507c865b6a772ce3cf478cc55aaf25ef03e352
MD5 85844c6bb07a1762121f3594edea2b37
BLAKE2b-256 54c379e2c7c26bfa21e2e270cb381bc674ddfcc8dfb14d837b04e7b9f23f7d1e

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d347f094e99cc8da56b57125bf259fc7c1a1e1a8c0396c25f1ef4f50d073c6eb
MD5 eda166ef62ba8914977a4bf6c50abee1
BLAKE2b-256 10863b6d7e7dab39b66de78f2da0a29b9866604eb222b170010d857d65270b6e

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f8cfeb0c76edc0e1be17ebea6a1b8e1c4065503229260a09388e22480c74e477
MD5 918808c15302ef6c9613cb30161ca154
BLAKE2b-256 b7aadf60bf9bb59b5355a50f823dc20f494bd636f2566fa351a5796acb7f1c72

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for boost_histogram-1.1.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1011a125fdc4b41e038459ea447785846a37943ee034c6755ac3d034df526a6a
MD5 9490784dc142aaed7cd07927592f82f3
BLAKE2b-256 0bb4d44159c653e02cd28e001b17f7d5cba6da0ed6bcd9a0608b86f39e782a8b

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 492d6ed304598c5e3399065fa6e9389cd93a3567185eda058619dd9353711714
MD5 8e65d74770049661db5d5d3b3e7a0d68
BLAKE2b-256 6d346a2a955074b50c2a3b293c05b59e9346eecfc34bf85514f99a6374f27623

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 6cb898ee68bced1ec9ec4d50a2968611770c2f406304254eda41623cdffc0cbb
MD5 5e8f1f7c8c83b15a7728d040e8db7420
BLAKE2b-256 df621f9c56ede0cf0994abc92f3447288fab7ab831617bb029dd7352ed5ca857

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2b46ae0bbbea0b03d08614a516ff235f2482b6eb397f3447a5fe7e7867edf82
MD5 9390b95af6f856b475038f2ccfa3af1f
BLAKE2b-256 b3675912de777aa6b4f4aaabf836ff0601320c432ab41c38698d923d52e5c4d6

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d783c827afc1f8396dab3b827399a24c08e35d5237b4c3cb7d9f15d5e5a55835
MD5 99551cfa51bdfd3069b68b24214d4901
BLAKE2b-256 f3a8096fe1b01cd1fd8591a279dc0adb5b89ac587ccb9e2108e43687c83ed6c8

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 755.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 00c2d85b980bc29cfe27f308c07f3c840ed8db3267d13d6664b822fb6fe70d95
MD5 d514bee2d02e111f8983da8924590ad3
BLAKE2b-256 dae0d49c34bfbc3f0bd2d74a6ebc2baf4490f900047862d2fea592a50f322c6f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 578.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 cb9da1c9397c9fcbc97902a4beba8ef9b9de1e7b46e14092e67eb6e377cee6e5
MD5 ee58c4dd2e758a6ef3dcfda7daca3b7a
BLAKE2b-256 2d8c10144bc631a17fb0bdeb22f71fd532f989ee38d6d703c06e88b0bc69d14d

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b0dafec665543f60d1e6de66ab4594ba4e1327bca6a8260a0fc401bd4872e65d
MD5 8c48df6ece079eb590976ef626a65c61
BLAKE2b-256 e42c24a97e761b89466a636107cfec72f77861768c38161d963ad282bf1e4566

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c1320eff578eb5923f1464cf693f11b64be73590f135720d072959e7badf3724
MD5 d317f48e4b456bd43a29c446939454ab
BLAKE2b-256 36e36049687c11f168031b747c9273e5c2447e16440153cb6683d1028ce5ce4f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for boost_histogram-1.1.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 fece60abbab6e7292280475bb292faf67b296a5e47342a3d565ac28d9fbb7c86
MD5 b93b3c07d8781acd09a1fb67f9861ffa
BLAKE2b-256 09909188944a96289e41832a1a2b2b582cdcd1bf6bf86b7b30569557a782e0b5

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0020a58eb13526ae9b284a875bfcbc1d233cabdd28497dcdffdd33c0e49825df
MD5 45400fe8dbd346e9abe6333ae7284140
BLAKE2b-256 75e6d8f4f58d023d07b385dc17af67a1c6086d613d58f7b8fc2e0c8db2965cc9

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a9bd63ea042bf31734e6abd36f4397e59c40618de4d6586e593e8645b7ec0f8d
MD5 0cc6a1f5e53f7572552b0a8a442abcee
BLAKE2b-256 60e8f2d6ffc9b3cb56f15647eb11505bf46b1aefd4db88e8433fc7ad5ec64e1a

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 61531814f97e3874a535ad79ffc2be8638255030c4f530bd548d1c2c02e5eb55
MD5 8f9ffdb4636d8888933bba493b6cec94
BLAKE2b-256 6525460b0187a5e708b3d0ff13a765d2fffb11e79e74ac5f7ba96571af62607f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 755.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1aff07ccbb266c51ffa6c94e33c9e5fb14cc728a8915b8e8f99381eb3947ef3f
MD5 5ef151694d3411fa03ea376db0e6f4e3
BLAKE2b-256 4a5c067b749893d622bccd272082ce3aec552078d90d61aca9405b7828c6036d

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 578.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 6002bdc285c5a2277721ced35acd07c797b58851e6736823768aa040a7faa671
MD5 2d7b1cb5697aa97aaed7ce20a03e6ce3
BLAKE2b-256 eac31f774aea7de4278969d3f7eff6c79dbc27592e3035b373e84856ab51278c

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.1.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 69371793816bb6d7a422a65d9360b86b15cd2fe5ca41719c2ae4ab9fe444102c
MD5 98f9dd9e8cc1360da988f9e47ba3c805
BLAKE2b-256 d7d6ef645cf0d266515af7071e7468a1470c27bd1184e5c0606afdecd58e9c90

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.1.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 773c918d21c16d6490c3aeed348a248c85996fb9c3db775c04ae6880acc03a80
MD5 e3dcf61c3d756108a80813443ca3c89e
BLAKE2b-256 7eed117947d5af359bd69a2e4cc99a3f722e675f37fa337806099d6bde60dd2d

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for boost_histogram-1.1.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c6e830d1378a47e7d0de31e94bb79c5a3ca1cfa123d510c83bf4d6727c333c24
MD5 c579a8d48ca3e85c9e3e4d6be76147ea
BLAKE2b-256 1e19d1583e99890b290bb2d82585d01bdd82dfb0ffa8b97e3df5ef0782db538a

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dfd4522dfe7232fb6c6e95b21a03867b4b27de071eda2df30f07d0c8f75bc49c
MD5 bfd85e1ca5db6a435eb1a5d49ae67fe8
BLAKE2b-256 2fd09df0564e0a971afb89bccb5018f377ea9277259b380dd3a9a7d83856a31a

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 67a570e012b8b1a87f6c94ece51f204021c823e20728ed77136affa2e82ccb3b
MD5 7d56cf04eeb70924799b54ce95054ab4
BLAKE2b-256 d70d972c88cfc26077e72cfaf24151262a14e975bb31e25336971aca49d419b3

See more details on using hashes here.

File details

Details for the file boost_histogram-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for boost_histogram-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a153d0d58803226ef04061d9e6bad6bcbec728f046db1874cf57347db1f0ccbc
MD5 9c0a141a977b38b4ecef8f6e8229d829
BLAKE2b-256 ae7bd778ec7371ba519db5c71949574ba0046d3048bb70ee5241c9ad5806c5e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page