Skip to main content

The Boost::Histogram Python wrapper.

Project description

boost-histogram logo

boost-histogram for Python

Actions Status Documentation Status Code style: black

PyPI version Conda-Forge PyPI platforms DOI

GitHub Discussion Gitter Scikit-HEP

Python bindings for Boost::Histogram (source), a C++14 library. This is one of the fastest libraries for histogramming, while still providing the power of a full histogram object. See what's new.

For end users interested in analysis, see Hist, a first-party analyst-friendly histogram library that extends boost-histogram with named axes, many new shortcuts including UHI+, plotting shortcuts, and more.

Usage

Slideshow of features. See expandable text below if the image is not readable.

Text intro (click to expand)
import boost_histogram as bh

# Compose axis however you like; this is a 2D histogram
hist = bh.Histogram(
    bh.axis.Regular(2, 0, 1),
    bh.axis.Regular(4, 0.0, 1.0),
)

# Filling can be done with arrays, one per dimension
hist.fill(
    [0.3, 0.5, 0.2],
    [0.1, 0.4, 0.9],
)

# NumPy array view into histogram counts, no overflow bins
values = hist.values()

# Make a new histogram with just the second axis, summing over the first, and
# rebinning the second into larger bins:
h2 = hist[::sum, ::bh.rebin(2)]

We support the uhi PlottableHistogram protocol, so boost-histogram/Hist histograms can be plotted via any compatible library, such as mplhep.

Cheatsheet

Simplified list of features (click to expand)
  • Many axis types (all support metadata=...)
    • bh.axis.Regular(n, start, stop, ...): Make a regular axis. Options listed below.
      • overflow=False: Turn off overflow bin
      • underflow=False: Turn off underflow bin
      • growth=True: Turn on growing axis, bins added when out-of-range items added
      • circular=True: Turn on wrapping, so that out-of-range values wrap around into the axis
      • transform=bh.axis.transform.Log: Log spacing
      • transform=bh.axis.transform.Sqrt: Square root spacing
      • transform=bh.axis.transform.Pow(v): Power spacing
      • See also the flexible Function transform
    • bh.axis.Integer(start, stop, *, underflow=True, overflow=True, growth=False, circular=False): Special high-speed version of regular for evenly spaced bins of width 1
    • bh.axis.Variable([start, edge1, edge2, ..., stop], *, underflow=True, overflow=True, circular=False): Uneven bin spacing
    • bh.axis.IntCategory([...], *, growth=False): Integer categories
    • bh.axis.StrCategory([...], *, growth=False): String categories
    • bh.axis.Boolean(): A True/False axis
  • Axis features:
    • .index(value): The index at a point (or points) on the axis
    • .value(index): The value for a fractional bin (or bins) in the axis
    • .bin(i): The bin edges (continuous axis) or a bin value (discrete axis)
    • .centers: The N bin centers (if continuous)
    • .edges: The N+1 bin edges (if continuous)
    • .extent: The number of bins (including under/overflow)
    • .metadata: Anything a user wants to store
    • .traits: The options set on the axis
    • .size: The number of bins (not including under/overflow)
    • .widths: The N bin widths
  • Many storage types
    • bh.storage.Double(): Doubles for weighted values (default)
    • bh.storage.Int64(): 64-bit unsigned integers
    • bh.storage.Unlimited(): Starts small, but can go up to unlimited precision ints or doubles.
    • bh.storage.AtomicInt64(): Threadsafe filling, experimental. Does not support growing axis in threads.
    • bh.storage.Weight(): Stores a weight and sum of weights squared.
    • bh.storage.Mean(): Accepts a sample and computes the mean of the samples (profile).
    • bh.storage.WeightedMean(): Accepts a sample and a weight. It computes the weighted mean of the samples.
  • Accumulators
    • bh.accumulator.Sum: High accuracy sum (Neumaier) - used by the sum method when summing a numerical histogram
    • bh.accumulator.WeightedSum: Tracks a weighted sum and variance
    • bh.accumulator.Mean: Running count, mean, and variance (Welfords's incremental algorithm)
    • bh.accumulator.WeightedMean: Tracks a weighted sum, mean, and variance (West's incremental algorithm)
  • Histogram operations
    • h.ndim: The number of dimensions
    • h.size or len(h): The number of bins
    • +: Add two histograms (storages must match types currently)
    • *=: Multiply by a scaler (not all storages) (hist * scalar and scalar * hist supported too)
    • /=: Divide by a scaler (not all storages) (hist / scalar supported too)
    • .kind: Either bh.Kind.COUNT or bh.Kind.MEAN, depending on storage
    • .sum(flow=False): The total count of all bins
    • .project(ax1, ax2, ...): Project down to listed axis (numbers). Can also reorder axes.
    • .to_numpy(flow=False, view=False): Convert to a NumPy style tuple (with or without under/overflow bins)
    • .view(flow=False): Get a view on the bin contents (with or without under/overflow bins)
    • .values(flow=False): Get a view on the values (counts or means, depending on storage)
    • .variances(flow=False): Get the variances if available
    • .counts(flow=False): Get the effective counts for all storage types
    • .reset(): Set counters to 0
    • .empty(flow=False): Check to see if the histogram is empty (can check flow bins too if asked)
    • .copy(deep=False): Make a copy of a histogram
    • .axes: Get the axes as a tuple-like (all properties of axes are available too)
      • .axes[0]: Get the 0th axis
      • .axes.edges: The lower values as a broadcasting-ready array
      • .axes.centers: The centers of the bins broadcasting-ready array
      • .axes.widths: The bin widths as a broadcasting-ready array
      • .axes.metadata: A tuple of the axes metadata
      • .axes.size: A tuple of the axes sizes (size without flow)
      • .axes.extent: A tuple of the axes extents (size with flow)
      • .axes.bin(*args): Returns the bin edges as a tuple of pairs (continuous axis) or values (describe)
      • .axes.index(*args): Returns the bin index at a value for each axis
      • .axes.value(*args): Returns the bin value at an index for each axis
  • Indexing - Supports UHI Indexing
    • Bin content access / setting
      • v = h[b]: Access bin content by index number
      • v = h[{0:b}]: All actions can be represented by axis:item dictionary instead of by position (mostly useful for slicing)
    • Slicing to get histogram or set array of values
      • h2 = h[a:b]: Access a slice of a histogram, cut portions go to flow bins if present
      • h2 = h[:, ...]: Using : and ... supported just like NumPy
      • h2 = h[::sum]: Third item in slice is the "action"
      • h[...] = array: Set the bin contents, either include or omit flow bins
    • Special accessors
      • bh.loc(v): Supply value in axis coordinates instead of bin number
      • bh.underflow: The underflow bin (use empty beginning on slice for slicing instead)
      • bh.overflow: The overflow bin (use empty end on slice for slicing instead)
    • Special actions (third item in slice)
      • sum: Remove axes via projection; if limits are given, use those
      • bh.rebin(n): Rebin an axis
  • NumPy compatibility
    • bh.numpy provides faster drop in replacements for NumPy histogram functions
    • Histograms follow the buffer interface, and provide .view()
    • Histograms can be converted to NumPy style output tuple with .to_numpy()
  • Details
    • All objects support copy/deepcopy/pickle
    • Fully statically typed, tested with MyPy.

Installation

You can install this library from PyPI with pip:

python3 -m pip install boost-histogram

All the normal best-practices for Python apply; Pip should not be very old (Pip 9 is very old), you should be in a virtual environment, etc. Python 3.6+ is required; for older versions of Python (3.5 and 2.7), 0.13 will be installed instead, which is API equivalent to 1.0, but will not be gaining new features.

Binaries available:

The easiest way to get boost-histogram is to use a binary wheel, which happens when you run the above command on a supported platform. Wheels are produced using cibuildwheel; all common platforms have wheels provided in boost-histogram:

System Arch Python versions PyPy versions
ManyLinux1 (custom GCC 9.2) 32 & 64-bit 3.6, 3.7, 3.8
ManyLinux2010 32 & 64-bit 3.6, 3.7, 3.8, 3.9, 3.10 (64-bit) 7.3: 3.7
ManyLinux2014 ARM64 3.6, 3.7, 3.8, 3.9, 3.10
macOS 10.9+ 64-bit 3.6, 3.7, 3.8, 3.9, 3.10 7.3: 3.7
macOS Universal2 Arm64 3.8, 3.9, 3.10
Windows 32 & 64-bit 3.6, 3.7, 3.8, 3.9, 3.10 (64-bit) 7.3: 3.7
  • manylinux1: Using a custom docker container with GCC 9 to produce. Anything running Python 3.9 should be compatible with manylinux2010, so manylinux1 not provided for Python 3.9 (like NumPy).
  • manylinux2010: Requires pip 10+.
  • PyPy 7.3.x: Supports the officially supported pypy3.7 on all Intel platforms.
  • ARM on Linux is supported for newer Python versions via manylinux2014. PowerPC or IBM-Z available on request, or manylinux_2_24.
  • macOS Universal2 wheels for Apple Silicon and Intel provided for Python 3.8+ (requires Pip 21.0.1 or newer).

If you are on a Linux system that is not part of the "many" in manylinux, such as Alpine or ClearLinux, building from source is usually fine, since the compilers on those systems are often quite new. It will just take longer to install when it is using the sdist instead of a wheel. All dependencies are header-only and included.

Conda-Forge

The boost-histogram package is available on conda-forge, as well. All supported variants are available.

conda install -c conda-forge boost-histogram

Source builds

For a source build, for example from an "SDist" package, the only requirements are a C++14 compatible compiler. The compiler requirements are dictated by Boost.Histogram's C++ requirements: gcc >= 5.5, clang >= 3.8, or msvc >= 14.1. You should have a version of pip less than 2-3 years old (10+).

Boost is not required or needed (this only depends on included header-only dependencies). You can install directly from GitHub if you would like.

python -m pip install git+https://github.com/scikit-hep/boost-histogram.git@develop

Developing

See CONTRIBUTING.md for details on how to set up a development environment.

Contributors

We would like to acknowledge the contributors that made this project possible (emoji key):


Henry Schreiner

🚧 💻 📖

Hans Dembinski

🚧 💻

N!no

⚠️ 📖

Jim Pivarski

🤔

Nicholas Smith

🐛

physicscitizen

🐛

Chanchal Kumar Maji

📖

Doug Davis

🐛

Pierre Grimaud

📖

Beojan Stanislaus

🐛

Popinaodude

🐛

Congqiao Li

🐛

alexander-held

🐛

Chris Burr

📖

Konstantin Gizdov

📦 🐛

Kyle Cranmer

📖

Aman Goel

📖 💻

This project follows the all-contributors specification.

Talks and other documentation/tutorial sources

The official documentation is here, and includes a quickstart.


Acknowledgements

This library was primarily developed by Henry Schreiner and Hans Dembinski.

Support for this work was provided by the National Science Foundation cooperative agreement OAC-1836650 (IRIS-HEP) and OAC-1450377 (DIANA/HEP). Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

boost_histogram-1.2.0.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

boost_histogram-1.2.0-pp37-pypy37_pp73-win_amd64.whl (746.3 kB view details)

Uploaded PyPy Windows x86-64

boost_histogram-1.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

boost_histogram-1.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-1.2.0-cp310-cp310-win_amd64.whl (746.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

boost_histogram-1.2.0-cp310-cp310-win32.whl (571.2 kB view details)

Uploaded CPython 3.10 Windows x86

boost_histogram-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

boost_histogram-1.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

boost_histogram-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

boost_histogram-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

boost_histogram-1.2.0-cp310-cp310-macosx_10_9_universal2.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.2.0-cp39-cp39-win_amd64.whl (835.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

boost_histogram-1.2.0-cp39-cp39-win32.whl (571.9 kB view details)

Uploaded CPython 3.9 Windows x86

boost_histogram-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

boost_histogram-1.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

boost_histogram-1.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

boost_histogram-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

boost_histogram-1.2.0-cp39-cp39-macosx_10_9_universal2.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.2.0-cp38-cp38-win_amd64.whl (745.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

boost_histogram-1.2.0-cp38-cp38-win32.whl (571.8 kB view details)

Uploaded CPython 3.8 Windows x86

boost_histogram-1.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

boost_histogram-1.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

boost_histogram-1.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

boost_histogram-1.2.0-cp38-cp38-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.8

boost_histogram-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

boost_histogram-1.2.0-cp38-cp38-macosx_10_9_universal2.whl (3.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.2.0-cp37-cp37m-win_amd64.whl (753.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

boost_histogram-1.2.0-cp37-cp37m-win32.whl (572.7 kB view details)

Uploaded CPython 3.7m Windows x86

boost_histogram-1.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

boost_histogram-1.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

boost_histogram-1.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

boost_histogram-1.2.0-cp37-cp37m-manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.7m

boost_histogram-1.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

boost_histogram-1.2.0-cp36-cp36m-win_amd64.whl (753.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

boost_histogram-1.2.0-cp36-cp36m-win32.whl (572.7 kB view details)

Uploaded CPython 3.6m Windows x86

boost_histogram-1.2.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

boost_histogram-1.2.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

boost_histogram-1.2.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

boost_histogram-1.2.0-cp36-cp36m-manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.6m

boost_histogram-1.2.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file boost_histogram-1.2.0.tar.gz.

File metadata

  • Download URL: boost_histogram-1.2.0.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0.tar.gz
Algorithm Hash digest
SHA256 004ccfae0450012f35c8e815c8011a50e6e772652f52515cb5fee7b1c8cfb47c
MD5 6f47eed34ec726190f46a8d4838e8d4e
BLAKE2b-256 c4c8f663185fddbaf814cedc4da676ca54c1cd5e08f1ee5b67cd3e53c89494d5

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 746.3 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 bcc0b75a0fe013efc0ec6137799ea847e24afad01456a8d3a1030876ad06bd88
MD5 9ad84fd3bcbc601036d8e65bdb73a922
BLAKE2b-256 615ef2df6461775e8e48a9eb9d2cf482b0e07c7f7dbe4592093416227c618e3d

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 077d4c35cd7da688f9551a5c0643f30400fb1ae8434e78f0548b54ef09579df2
MD5 05bcb74e781d59be257bb607b23b888c
BLAKE2b-256 8ae57bf73962a70b2958169a11b66fe7d6b7a794e633dd7c5065ca3ff6abb96c

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a3e42429e4b362da271f1f736340fec0ddcc3c80be35525a45c1ed840d3d01de
MD5 dca318647ee79adf11fb7a1c92c3fa43
BLAKE2b-256 7018607e05db9011cf25c27110aa7fbbb5b770b1a7d354805c6c9b32355b67bd

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 746.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 af1fa9fdb02f216241bbd843d5356b9b4b39bc877b26b98f5446c6e2d96d291c
MD5 8e2ab01b25ac6dfb42cfd2a5abbd7550
BLAKE2b-256 7e20260bf7cfb81b8bd54ac9895a0576b914a491453dbe0239739c0f19dd540c

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 571.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e241b20a76cff4dceeb6fda8d44024d2c63d1e7777fc71ebffc718cb98da026a
MD5 34fe32a5f465a214109cc28758c8c17c
BLAKE2b-256 0dbf41f2994ed88ffc4f89f6397cf3f040a95698bd7caea6c67de3d15f6b48bd

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b82c064dda1cd22379666af28eca1925f41633b59e56f385f826227a68177d5
MD5 e7f31da68da59c6676a52fb4feaef8df
BLAKE2b-256 6fe142967702bcee0a096db56bb27b8733d05139943cd52cee987ee4940e67ff

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d84d980a1cacece9a1fa4e56361f9c0e88ec782565ac376ab299a687bcc902c4
MD5 d9ddba88825820ee5c24d9524bd666a5
BLAKE2b-256 3cb23a2a317a7a81e7daed84ee95cf1623cc6fd6092f480bf21a41bdf16b6681

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 901f368a3d48d4717c4ff43540d42688aa042ca17ee11e0952fca71fc6f06863
MD5 237d1e6ea0b22a5194b4c10899f5de2d
BLAKE2b-256 f14e360999632590cfd61080202fd673d248d9e1e72f8eb669b4974a269f3377

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d3c1fe7d4bc4d4f6015c07c85b304d391ddf86b51caa0da96d91d9ffc2c92fe
MD5 9deece1202f470e0dfc4487c2089273f
BLAKE2b-256 589a8bbc873be2885e56039cc025173d98b30ef592280cb2d6af7b5e6334ec5c

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3f73d94f81f3c60f862d054f2dfb48a8772415edfae72f79b84a044e300b8685
MD5 e0315e4b61d1d1a4b3e78ac16e892180
BLAKE2b-256 43969ed3826b63dd1b1fdaa1c595a8a1ef2d65311b7f9c214a7fb33e3cdc77e9

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 835.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9ea6e033f1ca4fae1f63ecfe5f610bc8cfe3e3cb7b7acdcbb11d0dba09bd52b3
MD5 ae111d3410e4adceb00ee9edb83952bc
BLAKE2b-256 de675f0f176537d088ceb3bb0711eacd45fd746d437f1aa8ef5ff064dafbe639

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 571.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 259986fe881c9ef0eda5a1c9379eb998b051707fcd213ab353053d70be88bf25
MD5 8c871212841228788055dbf24131eaaf
BLAKE2b-256 3860247b51b865aec6539e9dfe08cf95c10a13e6cdd9f0fa7163147a9423686e

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd73df716d63bbceb6dc3ee12f98c2b4055832212a796378ba7834dfe1c7404b
MD5 8d22528c70241d5b3ef755ab73fde87a
BLAKE2b-256 e7b6ba7074aa48fd58021f199526444f856b25416cf151ed1df28fb708c80d28

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 48064fced261d6392114926a1ce3e12606c8574cbbcaf941ffc59e15173e6fad
MD5 cf6a3e496fb6190e65df9105da6a4de3
BLAKE2b-256 af1d10c0bf2c84869d57c93078527214c7f07538ebf1124dbaf0c1f6e58b1e32

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 06971f20ebc08295853aba0ede5394dad7711372ea491f30c78ec20f811bb8ef
MD5 3f47f90b46c5705655aa7d03b204628e
BLAKE2b-256 97d42edbe56415f04156afccf5c046cbb5d38f4afee608cdf565d15ffca9ed47

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 be85170e36eb6ebe574ee39955d00dbde44a4d14ab780dfefa19c0e07e2770f9
MD5 0a70d1569fb3f500ef65e67d9d73f3ca
BLAKE2b-256 affa04cb504e410ab0f77a147cf1f065294848b566564dd600503c6b5dcd3e48

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ba289652ee5d2d56ad5de6b92e4491e41824d81bb951b442ebe856b3ae3e1baa
MD5 ab599102f8e7dad27d07f18ec93b6640
BLAKE2b-256 549549b3c4e522e073fd7eda9b13afb65f47ebe1d98281f24668be253fccbbc5

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 745.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 39f90da91419e8daed548249dbc7bcfe03d24d3d9e5d822059252ac668377122
MD5 428f5c1196aa389b6675e628d69bcd46
BLAKE2b-256 1fd007ba605d51d2268bd15068fb5da2f757cdf5107e3d299c3d59fa21e58fb2

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 571.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 73067698787b0c0af917e9abf5a0fc71ca084ae4902a621a306a18fb0e1a69fa
MD5 b40ecac4d6a4e3523f139f77b889dce2
BLAKE2b-256 8661333d56e29f582305f189ae5df233f6869bac4df74fe2766cf4f7280391c0

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 12b1a82f24a140709e17db2141eed922b61d0d9e354e38a0cbb6fb5c62d7aef1
MD5 c64e5f8829068febf528c99864b2cf0c
BLAKE2b-256 95e5726c5feee3134078bc5cde71e25d122cc3f044df2f204ceddba5c55a769c

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ee350cc10f22a368c25cd567fd3136ca5486099ac79c74e25fd9b850ae8aa455
MD5 7878cd0223804bd3af5d7e41664da8c3
BLAKE2b-256 7cdf9be2e74923d97bfd52b3efba4c27315e6faf11cf39d0dc2d3b147f092d44

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8ddd5bd4805910ae6c33d0f0b1ea8abc022fc8e9c618944d99ca7dba5b7fdf8c
MD5 fb8682724805b4a885dda3be931a9889
BLAKE2b-256 745c83116cf1a82466cb38e9c71c962168b2fc8e11de471b16f012a77523844f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 669c482a901a46cb33fd17f9a916aee06c069cafb1ba4ca646c81c40a28e76fb
MD5 60c3e16745eca06877833d67b90df9be
BLAKE2b-256 b9805f9e9dd023179b743cee3f92dda5a03cbdbe25028ead8600fc696a6bc536

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 982cb8c58a219316f673506d378252430e750b9bff4e26a36cfb80a89f1d5bdd
MD5 699a33b74dd44542bf053608f04f13b4
BLAKE2b-256 c2a11438ac1119733d589f3668b76400a3b9618600edd8acad6342d4142de419

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 728d001a2ba148bdcd949d812fda7ed0f24eaf4e9b0c0d75ecfedf1c5d6a3556
MD5 c0a2a2e826b59b04ad6cf65c4bf24167
BLAKE2b-256 5c333023397c5d930c46613f7c354c7d1ab636844f08a3e32cf63d1be5b3d876

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7594fa070267a97e71ebfafa201e7a2ffd5a09c52d29eadeed5b1aee0f3977ca
MD5 5643632427c15d84f2b8be2043bdfb61
BLAKE2b-256 4e7ecb01a76253538c790b8f2bd2e334f3a01cfbcb79bcfddbae8581314ce663

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 753.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e61250c463e6573d586a00c0a2bc6b4a62a5e7ca0e2b97fc960875313f46ea17
MD5 7c22a099e321f5a267e7730f7f0ea4f2
BLAKE2b-256 9ee26155aec477927b9d51a2c5415e67b23a938d2d1d36ac78a95457469dbce2

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 572.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 80d51c8e7051e6ba3f897ca9f00a025bf1510a250a4ab328eb819d07e47998c0
MD5 d0b9ed476eb2fc7984e581299c1c3f75
BLAKE2b-256 a82c3648bcb24126b33c567f04cd2bc21656aca2ba4d8a3241ed4716dcff4fa0

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0e08a3b54c541df12f4bdf5c7f02cecc0cfe9f347323db417b758d74a9cf5c7b
MD5 e20eeafb24e02a194f4192550a82620e
BLAKE2b-256 3ac01503913cc1a5f7fa5d6133d76fbd913f0e9f699248be1de3114844aee103

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 afd0b03c77fc0e78eeaddfb98e547a0ecc1cc7cdaee7b1aae4f912182f75641e
MD5 ad8b7f95f11df36ac58ab983d789f83f
BLAKE2b-256 92669794fa1e42ff90196b8a8c847732575712a76be34440caa725e3dc203508

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 10b56fde1ee46c5e90ed94a11633528c8bfb665f6b34b57ce8fce9cd806255cd
MD5 a62954723b200c72dbcd24f6e760c216
BLAKE2b-256 b70e0a2be34eedb8dbd4e592bafb0cceabcb073f09a523d37fc2d7496bfe3ca4

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1d558ad857486d41da648dd16daedff1a2d067fabd6c8e9a3c7047f493469528
MD5 6ab162db7720bd1c0104c7f3eff98555
BLAKE2b-256 afc8aa1495c2890f50cf7d7da8c53dea2cbe86a23fe975bf34cee99437a4b835

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e99351f73fe253ab3ee9e9d222121bb3e185c79c10ceaf66f3263f5141c2558a
MD5 f618185622c79db19e5b6957e0a013fa
BLAKE2b-256 297b283ce2227597af298d28081ae06f49155c4d164074897f1ba36fc0f8acbe

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 81ec8daa39c6a7ed05027881055e3c121d5999d700bec4ad2fe972b09e6d0904
MD5 1cb7e2541ec36054c8235deec54d51a0
BLAKE2b-256 984fb6820470952d1122776f9ee153b44e3e435250822bbb62d00b3d0811be1b

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 753.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d7b4de173c71fa383d0e96c1bd2d35122d6cc10bac554640bc82ed5c56389d6e
MD5 40a301351dee38ca8727e05e0900c2d1
BLAKE2b-256 3ec740b8392cff3cd2b114fce967e09ba29516fc750c061f951d85b4d7f531c5

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 572.7 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 55eb693d366ae221adf75e35fb604034cb9efc1b04be3049636a82247849e256
MD5 d7246a2fac4d39edfc9a8da65605d9c4
BLAKE2b-256 1072790ea513d59fd7eb67b45d7083e9bf026e92534fd8f05dedd03997a888a2

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 99e859138d299f04576d73c853bc31c8e1d2d232aba2e4d459c8a46530b4e24e
MD5 37bccff999c92ba74bf96fb631f4418f
BLAKE2b-256 39c10404ba2c0d20b5a20b96f985895c5c19de0aceea4b7949dd184ec185c1f8

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4109685f1fce384c9ef88da33813bd8f1bbfbe17a9e5508f4a3b5ba372cd30f4
MD5 1165564b42376db6e5b55604685ed89d
BLAKE2b-256 0863e862180a355d1c95469e13d72450012c3a1945e0d5411387b1c9c2b0a9f1

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0f25ec2065b9bdb3777b8e41d36998eb097ed80c143e5053dd37f5bed386e6c4
MD5 255d8e4c64d72df569c492b3dee1fbe6
BLAKE2b-256 b9d29becc2b2435589abb95cd343138f4175cdb5d2ae1f1eded1130dd8577636

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 089167096904d468342cf99a20848f7d79b14c0885e1cad8ed678c54fa91d156
MD5 8a35d4490e4a6a709ee9460c71996b4e
BLAKE2b-256 a8155c4fee1fd2e069f2f763501323020ebf75ddd723660045aa884a83285cf4

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5b53e616c219675450c52df777f28eabd4d2d4625fda5cc12f51f317bed627c3
MD5 ffbc49af0fc249ecc4d827fa8e4a9416
BLAKE2b-256 71b5f478c7f2688fb2a23c478b3f98b498fc849f3ecaf11017aa24fa913322b0

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d7f50dd4a375fd63cc5024d62c412a9f109a96b8bc25554b4ecf5144aaf49fc
MD5 36b89b209b7f65f7baa04203d49e0616
BLAKE2b-256 c0d8a1d4167bf7d0ff5870c79723066bdda43b8076361af46ec972133111ac62

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page