Skip to main content

The Boost::Histogram Python wrapper.

Project description

boost-histogram logo

boost-histogram for Python

Actions Status Documentation Status Code style: black

PyPI version Conda-Forge PyPI platforms DOI

GitHub Discussion Gitter Scikit-HEP

Python bindings for Boost::Histogram (source), a C++14 library. This is one of the fastest libraries for histogramming, while still providing the power of a full histogram object. See what's new.

For end users interested in analysis, see Hist, a first-party analyst-friendly histogram library that extends boost-histogram with named axes, many new shortcuts including UHI+, plotting shortcuts, and more.

Usage

Slideshow of features. See expandable text below if the image is not readable.

Text intro (click to expand)
import boost_histogram as bh

# Compose axis however you like; this is a 2D histogram
hist = bh.Histogram(
    bh.axis.Regular(2, 0, 1),
    bh.axis.Regular(4, 0.0, 1.0),
)

# Filling can be done with arrays, one per dimension
hist.fill(
    [0.3, 0.5, 0.2],
    [0.1, 0.4, 0.9],
)

# NumPy array view into histogram counts, no overflow bins
values = hist.values()

# Make a new histogram with just the second axis, summing over the first, and
# rebinning the second into larger bins:
h2 = hist[::sum, ::bh.rebin(2)]

We support the uhi PlottableHistogram protocol, so boost-histogram/Hist histograms can be plotted via any compatible library, such as mplhep.

Cheatsheet

Simplified list of features (click to expand)
  • Many axis types (all support metadata=...)
    • bh.axis.Regular(n, start, stop, ...): Make a regular axis. Options listed below.
      • overflow=False: Turn off overflow bin
      • underflow=False: Turn off underflow bin
      • growth=True: Turn on growing axis, bins added when out-of-range items added
      • circular=True: Turn on wrapping, so that out-of-range values wrap around into the axis
      • transform=bh.axis.transform.Log: Log spacing
      • transform=bh.axis.transform.Sqrt: Square root spacing
      • transform=bh.axis.transform.Pow(v): Power spacing
      • See also the flexible Function transform
    • bh.axis.Integer(start, stop, *, underflow=True, overflow=True, growth=False, circular=False): Special high-speed version of regular for evenly spaced bins of width 1
    • bh.axis.Variable([start, edge1, edge2, ..., stop], *, underflow=True, overflow=True, circular=False): Uneven bin spacing
    • bh.axis.IntCategory([...], *, growth=False): Integer categories
    • bh.axis.StrCategory([...], *, growth=False): String categories
    • bh.axis.Boolean(): A True/False axis
  • Axis features:
    • .index(value): The index at a point (or points) on the axis
    • .value(index): The value for a fractional bin (or bins) in the axis
    • .bin(i): The bin edges (continuous axis) or a bin value (discrete axis)
    • .centers: The N bin centers (if continuous)
    • .edges: The N+1 bin edges (if continuous)
    • .extent: The number of bins (including under/overflow)
    • .metadata: Anything a user wants to store
    • .traits: The options set on the axis
    • .size: The number of bins (not including under/overflow)
    • .widths: The N bin widths
  • Many storage types
    • bh.storage.Double(): Doubles for weighted values (default)
    • bh.storage.Int64(): 64-bit unsigned integers
    • bh.storage.Unlimited(): Starts small, but can go up to unlimited precision ints or doubles.
    • bh.storage.AtomicInt64(): Threadsafe filling, experimental. Does not support growing axis in threads.
    • bh.storage.Weight(): Stores a weight and sum of weights squared.
    • bh.storage.Mean(): Accepts a sample and computes the mean of the samples (profile).
    • bh.storage.WeightedMean(): Accepts a sample and a weight. It computes the weighted mean of the samples.
  • Accumulators
    • bh.accumulator.Sum: High accuracy sum (Neumaier) - used by the sum method when summing a numerical histogram
    • bh.accumulator.WeightedSum: Tracks a weighted sum and variance
    • bh.accumulator.Mean: Running count, mean, and variance (Welfords's incremental algorithm)
    • bh.accumulator.WeightedMean: Tracks a weighted sum, mean, and variance (West's incremental algorithm)
  • Histogram operations
    • h.ndim: The number of dimensions
    • h.size or len(h): The number of bins
    • +: Add two histograms (storages must match types currently)
    • *=: Multiply by a scaler (not all storages) (hist * scalar and scalar * hist supported too)
    • /=: Divide by a scaler (not all storages) (hist / scalar supported too)
    • .kind: Either bh.Kind.COUNT or bh.Kind.MEAN, depending on storage
    • .sum(flow=False): The total count of all bins
    • .project(ax1, ax2, ...): Project down to listed axis (numbers). Can also reorder axes.
    • .to_numpy(flow=False, view=False): Convert to a NumPy style tuple (with or without under/overflow bins)
    • .view(flow=False): Get a view on the bin contents (with or without under/overflow bins)
    • .values(flow=False): Get a view on the values (counts or means, depending on storage)
    • .variances(flow=False): Get the variances if available
    • .counts(flow=False): Get the effective counts for all storage types
    • .reset(): Set counters to 0
    • .empty(flow=False): Check to see if the histogram is empty (can check flow bins too if asked)
    • .copy(deep=False): Make a copy of a histogram
    • .axes: Get the axes as a tuple-like (all properties of axes are available too)
      • .axes[0]: Get the 0th axis
      • .axes.edges: The lower values as a broadcasting-ready array
      • .axes.centers: The centers of the bins broadcasting-ready array
      • .axes.widths: The bin widths as a broadcasting-ready array
      • .axes.metadata: A tuple of the axes metadata
      • .axes.size: A tuple of the axes sizes (size without flow)
      • .axes.extent: A tuple of the axes extents (size with flow)
      • .axes.bin(*args): Returns the bin edges as a tuple of pairs (continuous axis) or values (describe)
      • .axes.index(*args): Returns the bin index at a value for each axis
      • .axes.value(*args): Returns the bin value at an index for each axis
  • Indexing - Supports UHI Indexing
    • Bin content access / setting
      • v = h[b]: Access bin content by index number
      • v = h[{0:b}]: All actions can be represented by axis:item dictionary instead of by position (mostly useful for slicing)
    • Slicing to get histogram or set array of values
      • h2 = h[a:b]: Access a slice of a histogram, cut portions go to flow bins if present
      • h2 = h[:, ...]: Using : and ... supported just like NumPy
      • h2 = h[::sum]: Third item in slice is the "action"
      • h[...] = array: Set the bin contents, either include or omit flow bins
    • Special accessors
      • bh.loc(v): Supply value in axis coordinates instead of bin number
      • bh.underflow: The underflow bin (use empty beginning on slice for slicing instead)
      • bh.overflow: The overflow bin (use empty end on slice for slicing instead)
    • Special actions (third item in slice)
      • sum: Remove axes via projection; if limits are given, use those
      • bh.rebin(n): Rebin an axis
  • NumPy compatibility
    • bh.numpy provides faster drop in replacements for NumPy histogram functions
    • Histograms follow the buffer interface, and provide .view()
    • Histograms can be converted to NumPy style output tuple with .to_numpy()
  • Details
    • All objects support copy/deepcopy/pickle
    • Fully statically typed, tested with MyPy.

Installation

You can install this library from PyPI with pip:

python3 -m pip install boost-histogram

All the normal best-practices for Python apply; Pip should not be very old (Pip 9 is very old), you should be in a virtual environment, etc. Python 3.6+ is required; for older versions of Python (3.5 and 2.7), 0.13 will be installed instead, which is API equivalent to 1.0, but will not be gaining new features.

Binaries available:

The easiest way to get boost-histogram is to use a binary wheel, which happens when you run the above command on a supported platform. Wheels are produced using cibuildwheel; all common platforms have wheels provided in boost-histogram:

System Arch Python versions PyPy versions
ManyLinux1 (custom GCC 9.2) 32 & 64-bit 3.6, 3.7, 3.8
ManyLinux2010 32 & 64-bit 3.6, 3.7, 3.8, 3.9 (64-bit) 7.3: 3.7
ManyLinux2014 32 & 64-bit 3.10
ManyLinux2014 ARM64 3.6, 3.7, 3.8, 3.9, 3.10
MuslLinux_1_1 64-bit 3.6, 3.7, 3.8, 3.9, 3.10
macOS 10.9+ 64-bit 3.6, 3.7, 3.8, 3.9, 3.10 7.3: 3.7
macOS Universal2 Arm64 3.8, 3.9, 3.10
Windows 32 & 64-bit 3.6, 3.7, 3.8, 3.9, 3.10 (64-bit) 7.3: 3.7
  • manylinux1: Using a custom docker container with GCC 9 to produce. Anything running Python 3.9 should be compatible with manylinux2010, so manylinux1 not provided for Python 3.9 (like NumPy). These will be likely be dropped Jan 1, 2022 when manylinux support ends.
  • manylinux2010: Requires pip 10+.
  • PyPy 7.3.x: Supports the officially supported pypy3.7 on all Intel platforms.
  • ARM on Linux is supported for newer Python versions via manylinux2014. PowerPC or IBM-Z available on request, or manylinux_2_24, or musllinux_1_1.
  • macOS Universal2 wheels for Apple Silicon and Intel provided for Python 3.8+ (requires Pip 21.0.1 or newer).

If you are on a Linux system that is not part of the "many" in manylinux or musl in musllinux, such as ClearLinux, building from source is usually fine, since the compilers on those systems are often quite new. It will just take longer to install when it is using the sdist instead of a wheel. All dependencies are header-only and included.

Conda-Forge

The boost-histogram package is available on conda-forge, as well. All supported variants are available.

conda install -c conda-forge boost-histogram

Source builds

For a source build, for example from an "SDist" package, the only requirements are a C++14 compatible compiler. The compiler requirements are dictated by Boost.Histogram's C++ requirements: gcc >= 5.5, clang >= 3.8, or msvc >= 14.1. You should have a version of pip less than 2-3 years old (10+).

Boost is not required or needed (this only depends on included header-only dependencies). You can install directly from GitHub if you would like.

python -m pip install git+https://github.com/scikit-hep/boost-histogram.git@develop

Developing

See CONTRIBUTING.md for details on how to set up a development environment.

Contributors

We would like to acknowledge the contributors that made this project possible (emoji key):


Henry Schreiner

🚧 💻 📖

Hans Dembinski

🚧 💻

N!no

⚠️ 📖

Jim Pivarski

🤔

Nicholas Smith

🐛

physicscitizen

🐛

Chanchal Kumar Maji

📖

Doug Davis

🐛

Pierre Grimaud

📖

Beojan Stanislaus

🐛

Popinaodude

🐛

Congqiao Li

🐛

alexander-held

🐛

Chris Burr

📖

Konstantin Gizdov

📦 🐛

Kyle Cranmer

📖

Aman Goel

📖 💻

This project follows the all-contributors specification.

Talks and other documentation/tutorial sources

The official documentation is here, and includes a quickstart.


Acknowledgements

This library was primarily developed by Henry Schreiner and Hans Dembinski.

Support for this work was provided by the National Science Foundation cooperative agreement OAC-1836650 (IRIS-HEP) and OAC-1450377 (DIANA/HEP). Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

boost_histogram-1.2.1.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

boost_histogram-1.2.1-pp37-pypy37_pp73-win_amd64.whl (744.8 kB view details)

Uploaded PyPy Windows x86-64

boost_histogram-1.2.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

boost_histogram-1.2.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-1.2.1-cp310-cp310-win_amd64.whl (744.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

boost_histogram-1.2.1-cp310-cp310-win32.whl (587.6 kB view details)

Uploaded CPython 3.10 Windows x86

boost_histogram-1.2.1-cp310-cp310-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

boost_histogram-1.2.1-cp310-cp310-musllinux_1_1_i686.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

boost_histogram-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

boost_histogram-1.2.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

boost_histogram-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

boost_histogram-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

boost_histogram-1.2.1-cp310-cp310-macosx_10_9_universal2.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.2.1-cp39-cp39-win_amd64.whl (843.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

boost_histogram-1.2.1-cp39-cp39-win32.whl (588.1 kB view details)

Uploaded CPython 3.9 Windows x86

boost_histogram-1.2.1-cp39-cp39-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

boost_histogram-1.2.1-cp39-cp39-musllinux_1_1_i686.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

boost_histogram-1.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

boost_histogram-1.2.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

boost_histogram-1.2.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

boost_histogram-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

boost_histogram-1.2.1-cp39-cp39-macosx_10_9_universal2.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.2.1-cp38-cp38-win_amd64.whl (744.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

boost_histogram-1.2.1-cp38-cp38-win32.whl (587.3 kB view details)

Uploaded CPython 3.8 Windows x86

boost_histogram-1.2.1-cp38-cp38-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

boost_histogram-1.2.1-cp38-cp38-musllinux_1_1_i686.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

boost_histogram-1.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

boost_histogram-1.2.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

boost_histogram-1.2.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

boost_histogram-1.2.1-cp38-cp38-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

boost_histogram-1.2.1-cp38-cp38-macosx_10_9_universal2.whl (3.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.2.1-cp37-cp37m-win_amd64.whl (759.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

boost_histogram-1.2.1-cp37-cp37m-win32.whl (575.7 kB view details)

Uploaded CPython 3.7m Windows x86

boost_histogram-1.2.1-cp37-cp37m-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

boost_histogram-1.2.1-cp37-cp37m-musllinux_1_1_i686.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

boost_histogram-1.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

boost_histogram-1.2.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

boost_histogram-1.2.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

boost_histogram-1.2.1-cp37-cp37m-manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.7m

boost_histogram-1.2.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

boost_histogram-1.2.1-cp36-cp36m-win_amd64.whl (758.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

boost_histogram-1.2.1-cp36-cp36m-win32.whl (575.1 kB view details)

Uploaded CPython 3.6m Windows x86

boost_histogram-1.2.1-cp36-cp36m-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

boost_histogram-1.2.1-cp36-cp36m-musllinux_1_1_i686.whl (2.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

boost_histogram-1.2.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

boost_histogram-1.2.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

boost_histogram-1.2.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

boost_histogram-1.2.1-cp36-cp36m-manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.6m

boost_histogram-1.2.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file boost_histogram-1.2.1.tar.gz.

File metadata

  • Download URL: boost_histogram-1.2.1.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1.tar.gz
Algorithm Hash digest
SHA256 a27842b2f1cfecc509382da2b25b03056354696482b38ec3c0220af0fc9b7579
MD5 12941488071cc8552d4bbf3fcb81ecbf
BLAKE2b-256 26456cfc7f8a36aa9537dfbb4e3495180303ce98c3b1307c8bc8dfc3548e0507

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 744.8 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 23b5148149bce0bc570f8dd78169b161b93949a9e4313fefc7e4683c6bb54e6b
MD5 3137669a0051378396ca3f5ace36f3d5
BLAKE2b-256 43490a058936017f1bea7cafc356f940e3b4257776a749db9b9de110ec8d50e7

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9abed85a561e68fb39bab99ccdad56f6586296e74a469323b4751acec4188a84
MD5 745a6d4af9f12478f5db501c29bc42be
BLAKE2b-256 e5e7860f59a0ed90498a08c400d3722e0a742f4c2cf5a951166458d93e4b8b5f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0ff1587b9a343c13e1ab4c2b939ef7fbbb7d3f2cbbdc34e402d01e5c00fb6087
MD5 8312e14df48cd31f75058b48d434628e
BLAKE2b-256 b82a55b8163938fb22281a5e4d0bbae8e89826ea3eed8a2127aa91e0f9a0d0e4

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 744.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b95912b6b32f411212bdaaa39a99a7417b5df460d9a933992548a0353b0ebb2c
MD5 4d9d988d2ffe557a4efb28b399b447a2
BLAKE2b-256 005d5dbe5ba614caf6de72d0ffef50ff7b4afff5a07db4bde2f36975dbb27e3d

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 587.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d390c706e31c36e1cbfb1a57abcfea935d9dc38366f71ed23f48b8df88283956
MD5 cdeab0a3ec4b570ad6cb1ebb5b925267
BLAKE2b-256 65144edffc9d9e7001ff56fac4631e460c7dc0c9283a5af490c4498f0a9c1d10

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3812f9c4c3a0858d9059b9991b79162a3046c2245538441447c302c7d4b2f256
MD5 15fd295d4caf0e4786d82fcb14ea7db4
BLAKE2b-256 f1b03893bb241b78da556b5e8422fdaa9f38e28400d3adf5896ec0ab6e31d648

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e7b82b3d6fe8663842b85b5526e3b9a361a3d3bbcd63b135e73b1ac5637746d0
MD5 4ec7d94296a4741c1e5e4cceec8450c8
BLAKE2b-256 d58b3b630e11681061a4422657e278fd3fba8aabaf3e73650848d7d8f893ec32

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85fe05564f3c6145a6003e861797ccfe4c638daa9794dcc2394830a1dc8a1eef
MD5 0d6e5d24271387fe44acf77358b2c8e7
BLAKE2b-256 5a51058d18eda82fc0e247202b71f92e874c31832634c42be75195d4e1a0d5ac

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 19ef9ed5fe3068108d412a3547daf1052dd16d30e38e120d0b1546c117a116b8
MD5 5fbff1926e763ad3cad26ac25c54a934
BLAKE2b-256 449af75180503ca7bd94820b17e38e8d5ac2e5b3e28cfc3f4dcf2b0f2f053fca

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 17d567ef98accac1eae01f0d407feee28a6e558c4515cbb09f07208626583e23
MD5 cda970cc46cc13b9e77ec44f1ffa1bc4
BLAKE2b-256 d8bbe3d4717be1340ce8955321e12ddf7c95a8577dde0fb76977dc561349aee9

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7fa2454ce41bebbfcaa61f947cb9888a7bf3d6a7da581dca07fdcc01aec9a1e9
MD5 f8c82f0d9051d6f952b1a7e8b1305464
BLAKE2b-256 ee46ccbb74e8e9c62fccd60d8db936b4581e6ac9f05f7907dc31c1484da5021f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8e255ee43bef2916dc9ce24c79eee637f19a7dc107c596eeef0d73060040827b
MD5 c55c01112ceadf8f87dd4bc898ae4e7e
BLAKE2b-256 c15a28b7f44da8756b9d0ca89848126f0552adf46e9c57e4c6c25026dd71c376

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 843.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 482c937a4ea373786664069539e3921c5a7c0dff839d267d0689e535e8251747
MD5 5c045cbd6f0d12579b5a5a29fc675415
BLAKE2b-256 df877bbaf14eadb1d0365cf0ddda4ab90183f41fc2ca588f600bd3d26cb97a66

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 588.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 cf14e9a2e6f89710f509cb08dd254a03c32dd4eadea7a3b9042e50c11aabcea0
MD5 c4eeb03a2057e9487694bb42117a7156
BLAKE2b-256 005b103e39905c1311b70168b487ac6b5143ad01026bd08950c2be2731ed460e

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dba88f33590b46b46981209b544c2081dece8c14917daf3bfc78e0f8c55e9ec8
MD5 a7d60922d039a056cb59b3cdfece7f79
BLAKE2b-256 0102ba7f2a8115f89c028a94d6f0f1f51b29aee8b4cdda6e85a1a0872e66486b

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 df18380ac8d48795224b2fa1361073a0383c0eb8e8ec1b18720193fa39aaeb02
MD5 22f20f6afeb994a33a2f266205aeb201
BLAKE2b-256 7fe4dcb825bffb49b9ef041d11d17b8409efa91da031a3b7d4424936994544bd

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 91e11ead491d90a4d762c331ff8030d0f8c6f79ce75cf605de3870a404a486a7
MD5 961296b879df522db56fa72f364cec85
BLAKE2b-256 13d5e9b9dba5bd4720fcccaf35c7e874fcbf606f14c3caa79ddff751727268d0

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dac5e03e700d0b7cfc955de9b54fc09f18f2a31166b0cd880a3f4e13129fb516
MD5 d7adcfd05bacc845efc6a3a5e591c4ad
BLAKE2b-256 8600902e361b61cec2355d38fada20be349f009add655078334693bb8c38a4ef

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a396372caa3b52b53c6e18059758303e2c897b2cd20bfe67ea046b675cf004a2
MD5 8d37a100090da54f43347045d87a26e5
BLAKE2b-256 100442e6c486a664d930afef14a7ad7dcee664d7140df811bcc743ee83c8fd90

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1aedf6f5c813c004103a065789617e8d19e16bea1e872cb51e55a69c212e4427
MD5 aa7f8c163b878dd0b564c82f95e15a18
BLAKE2b-256 b4fec21b863da8b7c0e021bbf86812efd12c8b88ac741d70c60df41a0112a85a

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b8def8dc4d812fef7b09515367955e4227fef31f8db038e99fee6df6eb4b2d10
MD5 e70f3259e6bee9e8ab99fc2c85f08bdc
BLAKE2b-256 62e03c67f3ecd0e7c807561e8037b9e94b862cbaaf197edf1828df8590dba8d3

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 744.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d5268471476417890b5114037c8e0a1a82fda2bcdc66c3657a6638ba7b1dee7c
MD5 26b9fa633e233062f388e71555e48205
BLAKE2b-256 c2c48ed1621fff689b00754963c7f92e7e34026bc251043bff4cc1dfd5eff4dd

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 587.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4c41768335820acfa5e5b3edeef3cf801d1012bf5d70ad4476e3fc211d1c8c90
MD5 b5b20bdea5dd15a4c1ec07507233679f
BLAKE2b-256 cf0aa1653d74071a63d2b1b1a21d42de2c827aa8bac00563b3d60b0d570abf51

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 889bdd11ef1e629bcdc6b678415a96ebc0ccb15f0b4fe9afb0dd41bcb7790c44
MD5 64ada88c8e7acad0a985f0db5b35772b
BLAKE2b-256 cdf68a7f4974fe07122b98fa6b1e3975b53f9dbcc96d65621ba84467e116d63f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a8390225b97974e8ad5ab573dad02d203161d19a7be901e6c2bc873b20f16329
MD5 a0181d87649926802038c26cc7373916
BLAKE2b-256 6c5c665b6ddb4b878af35c3f53c7b67d417c0cb0cac9a68e8cf8d1c229faea31

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5d91a7561e8c0379762b5600ebda5b6dbfadcbfd2250543b696e3caa874f74fe
MD5 89e229c44cd40b144fbef82cf1c00054
BLAKE2b-256 e966eeb5a6fca446e2844c5797315152385aaa8dcfbd9498012443bf5e2f2295

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ee4a48a39b06713f7c481d3c079c8e411386b1da0dcf2aa74f671a11d6f5ea08
MD5 2a6d05a952636419773f41b91fd7c054
BLAKE2b-256 b8491b21a3d1dd371d09d5c3574abcf8b23b901160cf4ff00bce0dbce5312df1

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1c885014f7cd84230c4e889ccb04c373ce69ed7d923f92dd62b984cf1be1f284
MD5 1fc1e4cdd429b6a081db8d94f5a6f24b
BLAKE2b-256 0af7c0aae58ac1824c9c95109fdbfba3f3ba166da08e2cc75433955568f6fc67

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a83f83946112d6f093c03fde76db61f663a85d17ed94c3d86b9315f01a269651
MD5 c176f22b8b3d8ecf8380bc6122d612eb
BLAKE2b-256 36668ee1f8653871433ee05f90414948156fb91faeb4317c30c0d083b5f4ccc5

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 38df0893a1f366249d4f5c2ed66dfc8a0a007e6f47ebdc725237a81868bcc7f9
MD5 219b2dd968af367374c8a212ad8cfaed
BLAKE2b-256 94429985cc73556c33fd7087cc468abad7a84dcfed2c932c5b4bb86fbee9f35e

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9d545aad89325086758cf7020bc1328175592993f96b02d683c65247f9ed2b9b
MD5 ffd66a8160000dc5668f0009cb138269
BLAKE2b-256 c4f6b6bec54da89a79f53b9d672a010f2ac706c94464ee07f9b44401b386d413

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a103f6e3a4038ce0d82a80b2cbe88f37178d972c375778393ce7e8503f348820
MD5 f12d1d07c2cde16153ed2ca362ada0c3
BLAKE2b-256 55eb683e806e9ae3afc72db9f17e3edb24d51246bbe94d96e31df3a34ee9198c

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 759.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e19af295eac1798ad7509efe3ecabe6397df297c438ffb70915ae52565fe81ab
MD5 d322269ef4f4f5ee3877c4c17d0875af
BLAKE2b-256 192646984a5bafbd3fd8777d082f99e655a1609a3cbaf9639f0818a012a29a6b

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 575.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 0e55d3408502c42fa6bdc5cfceb62628b1cc023fb6e5f8ae3ca1804947618916
MD5 4a40e571ac6c8e56bd0fa1a8693950d6
BLAKE2b-256 fb7383e8341bee890763acba7985c6a9d655c536b9e2e0d963103f6256a54da3

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fae7a015712c245d9f44184048b92e9004818a6d34f82736cb7627d2cb2f1615
MD5 a74ff9a34d4f34e99be0a22fd67a7f7b
BLAKE2b-256 f5305c716bdae8c27cdbc0ace92ce114e7d1a0aa6fb55a03f70d6b980140a7ae

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 07049b9172901b4f5eb34f1168b9fe90530d2f192b66049f66de2a9191b6d7a9
MD5 268b4565574799a47c6d90ab3995e732
BLAKE2b-256 770690da4507caa2919f5612147465fb159ced16b4b656dec0a28585a5e3f70e

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c3866ee3ee6ba64a2103b7c0307e70fc37a575a6a50f6d6b42fc142998c93d65
MD5 1671218e20b588115300056739f1e6be
BLAKE2b-256 eb8d7961fce8259f4abc94bd2ba168a09e90e50ca787e8e097bd795bd00697e0

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d3d4228eea18a71779f4553886aa40c5ed087e311184e23ccac49a8f59a4d916
MD5 7566a32b7aed61f19a58a493635fb266
BLAKE2b-256 b72d6abbb09117b3ef06e5ad32ee59773070820f183e098aef6da8d012007530

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6a6a828a763003db59ac01fcc6c3534e0eac43b77119a667d6bb08c6bd82800a
MD5 e7f67571993e8887e5a5616dd4eb4f14
BLAKE2b-256 df09356a0750f7d1e9858b989db479565cfd6341a107e85d9df0cad22850806f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 33b408e1a85e8ee7032260b3cb676a9496b69f1fa6bfa4374e55d55eae2c6514
MD5 a522532570ced1c5e194f80c72164aa1
BLAKE2b-256 fe2c30f0f2d61a3921ccc7a4949406fd15815f7cd959b2a9334fe1473a51815e

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7219f91594fb1629b82250b314df6f1e6ef401f9985d3a9b60e8a25f1ead2268
MD5 861cea2172fbd9eda6577fd8652454a1
BLAKE2b-256 4715b04a37eb27ad4b8c072ec26b37918df6d886e39d2110ca1f05228542c40b

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2eb41336c6343c5e179ff392b0401346a4a5b41f2984f99d97b3910ec3e9775b
MD5 d4aef0bf3b592976d7e3fe28d6a5ba45
BLAKE2b-256 96e6d6067a8f4c029b9769de8eb9aa22cf80b13f4b085f8e53c01124e04b1094

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 758.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 05f36d8377672785cdd70566d10254a0655e17b2930bbb2d4acd5844744b506e
MD5 6ca02382a36bc51a6eed0c27408c2abb
BLAKE2b-256 848ed19cb2d6ebaca2d4827e4ac60880be38a2908439f4e8a36be0bf03fd48e5

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 575.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 bd9f1120fdca9166dfea4385248c59476a86f51bfd13aced8c8fcff90b712123
MD5 7a49f0ee00fecafcba27500d4cd9c3d5
BLAKE2b-256 7006ce6634b23a2346f56fac0964af1ebe6cca7d647bc3891646c6d9ef5b59df

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp36-cp36m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 33561a8bd33d5aae46d027d88a05e2a8fcc06455fca01e551d3056c932d2d966
MD5 d8ec46d31250e89614fa1ff2b6a52041
BLAKE2b-256 5c7b6f436b804c6e035ba9b30ed85723da0642727f1fe8675ff8b42cf8efc3be

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp36-cp36m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 90e9332fd407e1d5fd01f34e559d7ef1aaf6766e315ca62f9497283350cdfcfc
MD5 e915c6b1c045bbd8539f23e412b2b12a
BLAKE2b-256 dffb2e02049bf48d2cebd3fa52771fead7bc40e572701ad40a66d9fc8aef4d34

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f92288c0ce08d658faa342ec217091cf7ae751d241acac630fd04f28fc2b7860
MD5 cc734275463a5ad105dee76412d8309a
BLAKE2b-256 97bccca65871a7cf54b386869c5063aa435e06f54f9e4be7a8b12c95cfdb45f0

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 825b21e12835b0577fcde9dfebc5d8edd8a8561fb8345c002c5c8680c2e9481b
MD5 0247a3238d25fc65ddeea0f7d74dafdc
BLAKE2b-256 d64158d62e6f7ee61a3f8c19f02b1c4c53caed697fb50414695d6bfcfac98a80

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for boost_histogram-1.2.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 07c09ef789b21cf7151218d12de422bb72b301ec6a3887796e908e575e74f57d
MD5 105bc15a8f0be46f0a4062c617f2adea
BLAKE2b-256 7f032ad5e11db177d9c24727bcb38a573684d474d9020e4c37348ce8d95e870c

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d9aea8bdf1c8f6141435450d74e917e46e0bd46cee012b591363b72c3968c732
MD5 586d55bb4dcb9dbd2e42d0e01bc2b8b3
BLAKE2b-256 016c9b710d773a67b0a112eb8a7b83ddb5f79442387458222e3a95bd6ed8f489

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 44e9fb8010fefe94dce0e8fd257c5dd0d86236023f1c63bd083cc0d01bc6c3ef
MD5 c3b2eb9a83e3ed783c18aa34d3a9d66b
BLAKE2b-256 6be050214ae59a85c3c226d499f81dfefa3bd23ac117346dffeb43f4bb63a1e8

See more details on using hashes here.

File details

Details for the file boost_histogram-1.2.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: boost_histogram-1.2.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for boost_histogram-1.2.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 450e2b348dab001da86cffe1677f58f92ff9cb343fd31288a3498af11ee855ee
MD5 4de192455c8526f1c0e86f35d4b1ed93
BLAKE2b-256 939e9308b4a420d0b7dd4c0dbb314c57271231101451d78dc7fdcdaf08abdf1f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page